推荐系统推荐列表多样性研究

Fuguo Zhang
{"title":"推荐系统推荐列表多样性研究","authors":"Fuguo Zhang","doi":"10.1109/ICMECG.2008.32","DOIUrl":null,"url":null,"abstract":"Recommender systems have emerged in the past several years as an effective way to help people cope with the problem of information overload. Most research up to this point has focused on improving the accuracy of recommender systems. However, considering the range of userpsilas interests covered, recommendation diversity is also important. In this paper we propose a novel topic diversity metric which explores hierarchical domain knowledge, and evaluate the recommendation diversity of the two most classic collaborative filtering (CF) algorithm with movielens dataset.","PeriodicalId":155692,"journal":{"name":"2008 International Conference on Management of e-Commerce and e-Government","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Research on Recommendation List Diversity of Recommender Systems\",\"authors\":\"Fuguo Zhang\",\"doi\":\"10.1109/ICMECG.2008.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems have emerged in the past several years as an effective way to help people cope with the problem of information overload. Most research up to this point has focused on improving the accuracy of recommender systems. However, considering the range of userpsilas interests covered, recommendation diversity is also important. In this paper we propose a novel topic diversity metric which explores hierarchical domain knowledge, and evaluate the recommendation diversity of the two most classic collaborative filtering (CF) algorithm with movielens dataset.\",\"PeriodicalId\":155692,\"journal\":{\"name\":\"2008 International Conference on Management of e-Commerce and e-Government\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Management of e-Commerce and e-Government\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMECG.2008.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Management of e-Commerce and e-Government","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECG.2008.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在过去的几年里,推荐系统作为一种有效的方式出现,帮助人们应对信息过载的问题。到目前为止,大多数研究都集中在提高推荐系统的准确性上。然而,考虑到用户的兴趣范围,推荐的多样性也很重要。本文提出了一种探索层次领域知识的主题多样性度量,并利用movielens数据集对两种最经典的协同过滤(CF)算法的推荐多样性进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Recommendation List Diversity of Recommender Systems
Recommender systems have emerged in the past several years as an effective way to help people cope with the problem of information overload. Most research up to this point has focused on improving the accuracy of recommender systems. However, considering the range of userpsilas interests covered, recommendation diversity is also important. In this paper we propose a novel topic diversity metric which explores hierarchical domain knowledge, and evaluate the recommendation diversity of the two most classic collaborative filtering (CF) algorithm with movielens dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信