基于多特征回归的头戴式显示器凝视深度预测

Martin Weier, T. Roth, André Hinkenjann, P. Slusallek
{"title":"基于多特征回归的头戴式显示器凝视深度预测","authors":"Martin Weier, T. Roth, André Hinkenjann, P. Slusallek","doi":"10.1145/3204493.3204547","DOIUrl":null,"url":null,"abstract":"Head-mounted displays (HMDs) with integrated eye trackers have opened up a new realm for gaze-contingent rendering. The accurate estimation of gaze depth is essential when modeling the optical capabilities of the eye. Most recently multifocal displays are gaining importance, requiring focus estimates to control displays or lenses. Deriving the gaze depth solely by sampling the scene's depth at the point-of-regard fails for complex or thin objects as eye tracking is suffering from inaccuracies. Gaze depth measures using the eye's vergence only provide an accurate depth estimate for the first meter. In this work, we combine vergence measures and multiple depth measures into feature sets. This data is used to train a regression model to deliver improved estimates. We present a study showing that using multiple features allows for an accurate estimation of the focused depth (MSE<0.1m) over a wide range (first 6m).","PeriodicalId":237808,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Predicting the gaze depth in head-mounted displays using multiple feature regression\",\"authors\":\"Martin Weier, T. Roth, André Hinkenjann, P. Slusallek\",\"doi\":\"10.1145/3204493.3204547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Head-mounted displays (HMDs) with integrated eye trackers have opened up a new realm for gaze-contingent rendering. The accurate estimation of gaze depth is essential when modeling the optical capabilities of the eye. Most recently multifocal displays are gaining importance, requiring focus estimates to control displays or lenses. Deriving the gaze depth solely by sampling the scene's depth at the point-of-regard fails for complex or thin objects as eye tracking is suffering from inaccuracies. Gaze depth measures using the eye's vergence only provide an accurate depth estimate for the first meter. In this work, we combine vergence measures and multiple depth measures into feature sets. This data is used to train a regression model to deliver improved estimates. We present a study showing that using multiple features allows for an accurate estimation of the focused depth (MSE<0.1m) over a wide range (first 6m).\",\"PeriodicalId\":237808,\"journal\":{\"name\":\"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3204493.3204547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204493.3204547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

头戴式显示器(hmd)与集成眼动追踪器打开了一个新的领域,为凝视视景渲染。在模拟眼睛的光学能力时,准确估计凝视深度是必不可少的。最近,多焦点显示器变得越来越重要,需要焦距估计来控制显示器或镜头。仅仅通过在注视点采样景物的深度来获得凝视深度,对于复杂或薄的物体来说是失败的,因为眼动追踪存在不准确性。凝视深度测量使用眼睛的辐辏只提供一个准确的深度估计的第一米。在这项工作中,我们将收敛度量和多个深度度量结合到特征集中。该数据用于训练回归模型,以提供改进的估计。我们提出的一项研究表明,使用多个特征可以在宽范围(前6m)内准确估计聚焦深度(MSE<0.1m)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the gaze depth in head-mounted displays using multiple feature regression
Head-mounted displays (HMDs) with integrated eye trackers have opened up a new realm for gaze-contingent rendering. The accurate estimation of gaze depth is essential when modeling the optical capabilities of the eye. Most recently multifocal displays are gaining importance, requiring focus estimates to control displays or lenses. Deriving the gaze depth solely by sampling the scene's depth at the point-of-regard fails for complex or thin objects as eye tracking is suffering from inaccuracies. Gaze depth measures using the eye's vergence only provide an accurate depth estimate for the first meter. In this work, we combine vergence measures and multiple depth measures into feature sets. This data is used to train a regression model to deliver improved estimates. We present a study showing that using multiple features allows for an accurate estimation of the focused depth (MSE<0.1m) over a wide range (first 6m).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信