基于离散小波的多重分形分析纹理分类:在医学磁共振成像中的应用

S. Oudjemia, J. Girault, S. Haddab, A. Ouahabi, Z. Ameur
{"title":"基于离散小波的多重分形分析纹理分类:在医学磁共振成像中的应用","authors":"S. Oudjemia, J. Girault, S. Haddab, A. Ouahabi, Z. Ameur","doi":"10.1109/IPTA.2012.6469510","DOIUrl":null,"url":null,"abstract":"We show the relevance of multifractal analysis for some problems in image. This paper deals the characterization of brain tumor in magnetic resonance imaging. We introduce a declination of wavelet Leaders that recently been shown to provide practioners with a robust and efficient tool for the multifractal analysis of signals and images. We calculated new multiresolution parameters called average of wavelet coefficient and the log-cumulate derived from the wavelet leaders and we have solved the problem posed by the choice of interval regression that enters in the calculation of different parameters (h(q), D(q), ζ(q)). We analyze and compare our estimator and simulated image against wavelet leaders. We apply the approach developed on different cerebral images in order to distinguish between different tissues corresponding to the healthy and pathological.","PeriodicalId":267290,"journal":{"name":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multifractal analysis based on discrete wavelet for texture classification: Application to medical magnetic resonance imaging\",\"authors\":\"S. Oudjemia, J. Girault, S. Haddab, A. Ouahabi, Z. Ameur\",\"doi\":\"10.1109/IPTA.2012.6469510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show the relevance of multifractal analysis for some problems in image. This paper deals the characterization of brain tumor in magnetic resonance imaging. We introduce a declination of wavelet Leaders that recently been shown to provide practioners with a robust and efficient tool for the multifractal analysis of signals and images. We calculated new multiresolution parameters called average of wavelet coefficient and the log-cumulate derived from the wavelet leaders and we have solved the problem posed by the choice of interval regression that enters in the calculation of different parameters (h(q), D(q), ζ(q)). We analyze and compare our estimator and simulated image against wavelet leaders. We apply the approach developed on different cerebral images in order to distinguish between different tissues corresponding to the healthy and pathological.\",\"PeriodicalId\":267290,\"journal\":{\"name\":\"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2012.6469510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2012.6469510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们展示了多重分形分析对图像中一些问题的相关性。本文讨论了脑肿瘤的磁共振成像特征。我们介绍了最近被证明为信号和图像的多重分形分析的从业人员提供了一个强大而有效的工具的小波前导的衰落。我们计算了新的多分辨率参数,称为小波系数的平均值和小波前导的对数累积,我们解决了在计算不同参数(h(q), D(q), ζ(q))时选择区间回归所带来的问题。针对小波引子,对估计器和模拟图像进行了分析和比较。我们将该方法应用于不同的大脑图像,以区分不同的组织对应的健康和病理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifractal analysis based on discrete wavelet for texture classification: Application to medical magnetic resonance imaging
We show the relevance of multifractal analysis for some problems in image. This paper deals the characterization of brain tumor in magnetic resonance imaging. We introduce a declination of wavelet Leaders that recently been shown to provide practioners with a robust and efficient tool for the multifractal analysis of signals and images. We calculated new multiresolution parameters called average of wavelet coefficient and the log-cumulate derived from the wavelet leaders and we have solved the problem posed by the choice of interval regression that enters in the calculation of different parameters (h(q), D(q), ζ(q)). We analyze and compare our estimator and simulated image against wavelet leaders. We apply the approach developed on different cerebral images in order to distinguish between different tissues corresponding to the healthy and pathological.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信