Yang Liu, Jiaze Zhang, Shengmao Zhang, Fei Wang, Xueseng Cui, Zuli Wu, Guohua Zou, Jing Bo
{"title":"多尺度海鱼目标快速检测网络优化方法研究","authors":"Yang Liu, Jiaze Zhang, Shengmao Zhang, Fei Wang, Xueseng Cui, Zuli Wu, Guohua Zou, Jing Bo","doi":"10.1109/ICECE54449.2021.9674233","DOIUrl":null,"url":null,"abstract":"The fish target detection algorithm lacks a good quality data set, and the algorithm achieves real-time detection with lower power consumption on embedded devices, and it is difficult to balance the calculation speed and identification ability. To this end, this paper collected and annotated a data set of 84 fishes containing 10042 images, and based on this data set, proposed a multi-scale input fast fish target detection network (BTP-yoloV3) and its optimization method. The experiment uses Depthwise convolution to redesign the backbone of the yoloV4 network, which reduces the amount of calculation by 94.1%, and the test accuracy is 92.34%. Then, the training model is enhanced with MixUp, CutMix, and mosaic to increase the test accuracy by 1.27%; Finally, use the mish, swish, and ELU activation functions to increase the test accuracy by 0.76%. As a result, the accuracy of testing the network with 2000 fish images reached 94.37%, and the computational complexity of the network BFLOPS was only 5.47. Comparing the YoloV3∼4, MobileNetV2- yoloV3, and YoloV3-tiny networks of migration learning on this data set. The results show that BTP-Yolov3 has smaller model parameters, faster calculation speed, and lower energy consumption during operation while ensuring the calculation accuracy. It provides a certain reference value for the practical application of neural network.","PeriodicalId":166178,"journal":{"name":"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Optimization Method of Multi-scale Marine Fish Target Fast Detection Network\",\"authors\":\"Yang Liu, Jiaze Zhang, Shengmao Zhang, Fei Wang, Xueseng Cui, Zuli Wu, Guohua Zou, Jing Bo\",\"doi\":\"10.1109/ICECE54449.2021.9674233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fish target detection algorithm lacks a good quality data set, and the algorithm achieves real-time detection with lower power consumption on embedded devices, and it is difficult to balance the calculation speed and identification ability. To this end, this paper collected and annotated a data set of 84 fishes containing 10042 images, and based on this data set, proposed a multi-scale input fast fish target detection network (BTP-yoloV3) and its optimization method. The experiment uses Depthwise convolution to redesign the backbone of the yoloV4 network, which reduces the amount of calculation by 94.1%, and the test accuracy is 92.34%. Then, the training model is enhanced with MixUp, CutMix, and mosaic to increase the test accuracy by 1.27%; Finally, use the mish, swish, and ELU activation functions to increase the test accuracy by 0.76%. As a result, the accuracy of testing the network with 2000 fish images reached 94.37%, and the computational complexity of the network BFLOPS was only 5.47. Comparing the YoloV3∼4, MobileNetV2- yoloV3, and YoloV3-tiny networks of migration learning on this data set. The results show that BTP-Yolov3 has smaller model parameters, faster calculation speed, and lower energy consumption during operation while ensuring the calculation accuracy. It provides a certain reference value for the practical application of neural network.\",\"PeriodicalId\":166178,\"journal\":{\"name\":\"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECE54449.2021.9674233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE54449.2021.9674233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on Optimization Method of Multi-scale Marine Fish Target Fast Detection Network
The fish target detection algorithm lacks a good quality data set, and the algorithm achieves real-time detection with lower power consumption on embedded devices, and it is difficult to balance the calculation speed and identification ability. To this end, this paper collected and annotated a data set of 84 fishes containing 10042 images, and based on this data set, proposed a multi-scale input fast fish target detection network (BTP-yoloV3) and its optimization method. The experiment uses Depthwise convolution to redesign the backbone of the yoloV4 network, which reduces the amount of calculation by 94.1%, and the test accuracy is 92.34%. Then, the training model is enhanced with MixUp, CutMix, and mosaic to increase the test accuracy by 1.27%; Finally, use the mish, swish, and ELU activation functions to increase the test accuracy by 0.76%. As a result, the accuracy of testing the network with 2000 fish images reached 94.37%, and the computational complexity of the network BFLOPS was only 5.47. Comparing the YoloV3∼4, MobileNetV2- yoloV3, and YoloV3-tiny networks of migration learning on this data set. The results show that BTP-Yolov3 has smaller model parameters, faster calculation speed, and lower energy consumption during operation while ensuring the calculation accuracy. It provides a certain reference value for the practical application of neural network.