{"title":"三罗马统治在图中的细分数","authors":"J. Amjadi, H. Sadeghi","doi":"10.56415/csjm.v30.07","DOIUrl":null,"url":null,"abstract":"For a graph $G=(V, E)$, a triple Roman domination function is a function $f: V(G)\\longrightarrow\\{0, 1, 2, 3, 4\\}$ having the property that for any vertex $v\\in V(G)$, if $f(v)<3$, then $f(\\mbox{AN}[v])\\geq|\\mbox{AN}(v)|+3$, where $\\mbox{AN}(v)=\\{w\\in N(v)\\mid f(w)\\geq1\\}$ and $\\mbox{AN}[v]=\\mbox{AN}(v)\\cup\\{v\\}$. The weight of a triple Roman dominating function $f$ is the value $\\omega(f)=\\sum_{v\\in V(G)}f(v)$. The triple Roman domination number of $G$, denoted by $\\gamma_{[3R]}(G)$, equals the minimum weight of a triple Roman dominating function on $G$. {\\em The triple Roman domination subdivision number} $\\mbox{sd}_{\\gamma_{[3R]}}(G)$ of a graph $G$ is the minimum number of edges that must be subdivided (each edge in $G$ can be subdivided at most once) in order to increase the triple Roman domination number. In this paper, we first show that the decision problem associated with $\\mbox{sd}_{\\gamma_{[3R]}}(G)$ is NP-hard and then establish upper bounds on the triple Roman domination subdivision number for arbitrary graphs.","PeriodicalId":262087,"journal":{"name":"Comput. Sci. J. Moldova","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Triple Roman domination subdivision number in graphs\",\"authors\":\"J. Amjadi, H. Sadeghi\",\"doi\":\"10.56415/csjm.v30.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a graph $G=(V, E)$, a triple Roman domination function is a function $f: V(G)\\\\longrightarrow\\\\{0, 1, 2, 3, 4\\\\}$ having the property that for any vertex $v\\\\in V(G)$, if $f(v)<3$, then $f(\\\\mbox{AN}[v])\\\\geq|\\\\mbox{AN}(v)|+3$, where $\\\\mbox{AN}(v)=\\\\{w\\\\in N(v)\\\\mid f(w)\\\\geq1\\\\}$ and $\\\\mbox{AN}[v]=\\\\mbox{AN}(v)\\\\cup\\\\{v\\\\}$. The weight of a triple Roman dominating function $f$ is the value $\\\\omega(f)=\\\\sum_{v\\\\in V(G)}f(v)$. The triple Roman domination number of $G$, denoted by $\\\\gamma_{[3R]}(G)$, equals the minimum weight of a triple Roman dominating function on $G$. {\\\\em The triple Roman domination subdivision number} $\\\\mbox{sd}_{\\\\gamma_{[3R]}}(G)$ of a graph $G$ is the minimum number of edges that must be subdivided (each edge in $G$ can be subdivided at most once) in order to increase the triple Roman domination number. In this paper, we first show that the decision problem associated with $\\\\mbox{sd}_{\\\\gamma_{[3R]}}(G)$ is NP-hard and then establish upper bounds on the triple Roman domination subdivision number for arbitrary graphs.\",\"PeriodicalId\":262087,\"journal\":{\"name\":\"Comput. Sci. J. Moldova\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Sci. J. Moldova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56415/csjm.v30.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Sci. J. Moldova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56415/csjm.v30.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Triple Roman domination subdivision number in graphs
For a graph $G=(V, E)$, a triple Roman domination function is a function $f: V(G)\longrightarrow\{0, 1, 2, 3, 4\}$ having the property that for any vertex $v\in V(G)$, if $f(v)<3$, then $f(\mbox{AN}[v])\geq|\mbox{AN}(v)|+3$, where $\mbox{AN}(v)=\{w\in N(v)\mid f(w)\geq1\}$ and $\mbox{AN}[v]=\mbox{AN}(v)\cup\{v\}$. The weight of a triple Roman dominating function $f$ is the value $\omega(f)=\sum_{v\in V(G)}f(v)$. The triple Roman domination number of $G$, denoted by $\gamma_{[3R]}(G)$, equals the minimum weight of a triple Roman dominating function on $G$. {\em The triple Roman domination subdivision number} $\mbox{sd}_{\gamma_{[3R]}}(G)$ of a graph $G$ is the minimum number of edges that must be subdivided (each edge in $G$ can be subdivided at most once) in order to increase the triple Roman domination number. In this paper, we first show that the decision problem associated with $\mbox{sd}_{\gamma_{[3R]}}(G)$ is NP-hard and then establish upper bounds on the triple Roman domination subdivision number for arbitrary graphs.