结合自组织图和聚类分析的客户细分和可视化

Yohji Kameoka, Keita Yagi, Shohei Munakata, Yoshiro Yamamoto
{"title":"结合自组织图和聚类分析的客户细分和可视化","authors":"Yohji Kameoka, Keita Yagi, Shohei Munakata, Yoshiro Yamamoto","doi":"10.1109/ICTKE.2015.7368465","DOIUrl":null,"url":null,"abstract":"To perceive the characteristics of customers from market information, it is necessary to aggregate the market information. So, we used a self-organizing map (SOM), arecency, frequency and monetary (RFM) analysis, and other methods to propose the classification of customers. In addition, we propose a visualization of the analysis results. In this study, we consider the combination of cluster analysis and the SOM for further consolidation of small clusters and visualization.","PeriodicalId":128925,"journal":{"name":"2015 13th International Conference on ICT and Knowledge Engineering (ICT & Knowledge Engineering 2015)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Customer segmentation and visualization by combination of self-organizing map and cluster analysis\",\"authors\":\"Yohji Kameoka, Keita Yagi, Shohei Munakata, Yoshiro Yamamoto\",\"doi\":\"10.1109/ICTKE.2015.7368465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To perceive the characteristics of customers from market information, it is necessary to aggregate the market information. So, we used a self-organizing map (SOM), arecency, frequency and monetary (RFM) analysis, and other methods to propose the classification of customers. In addition, we propose a visualization of the analysis results. In this study, we consider the combination of cluster analysis and the SOM for further consolidation of small clusters and visualization.\",\"PeriodicalId\":128925,\"journal\":{\"name\":\"2015 13th International Conference on ICT and Knowledge Engineering (ICT & Knowledge Engineering 2015)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 13th International Conference on ICT and Knowledge Engineering (ICT & Knowledge Engineering 2015)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTKE.2015.7368465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Conference on ICT and Knowledge Engineering (ICT & Knowledge Engineering 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTKE.2015.7368465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

要从市场信息中感知顾客的特征,就需要对市场信息进行汇总。因此,我们使用了自组织图(SOM)、近代性、频率和货币性(RFM)分析等方法来提出客户分类。此外,我们提出了分析结果的可视化。在本研究中,我们考虑将聚类分析和SOM相结合,以进一步巩固小聚类和可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Customer segmentation and visualization by combination of self-organizing map and cluster analysis
To perceive the characteristics of customers from market information, it is necessary to aggregate the market information. So, we used a self-organizing map (SOM), arecency, frequency and monetary (RFM) analysis, and other methods to propose the classification of customers. In addition, we propose a visualization of the analysis results. In this study, we consider the combination of cluster analysis and the SOM for further consolidation of small clusters and visualization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信