Binh-Son Hua, Quang-Hieu Pham, D. Nguyen, Minh-Khoi Tran, L. Yu, Sai-Kit Yeung
{"title":"SceneNN:一个带有注释的场景网格数据集","authors":"Binh-Son Hua, Quang-Hieu Pham, D. Nguyen, Minh-Khoi Tran, L. Yu, Sai-Kit Yeung","doi":"10.1109/3DV.2016.18","DOIUrl":null,"url":null,"abstract":"Several RGB-D datasets have been publicized over the past few years for facilitating research in computer vision and robotics. However, the lack of comprehensive and fine-grained annotation in these RGB-D datasets has posed challenges to their widespread usage. In this paper, we introduce SceneNN, an RGB-D scene dataset consisting of 100 scenes. All scenes are reconstructed into triangle meshes and have per-vertex and per-pixel annotation. We further enriched the dataset with fine-grained information such as axis-aligned bounding boxes, oriented bounding boxes, and object poses. We used the dataset as a benchmark to evaluate the state-of-the-art methods on relevant research problems such as intrinsic decomposition and shape completion. Our dataset and annotation tools are available at http://www.scenenn.net.","PeriodicalId":425304,"journal":{"name":"2016 Fourth International Conference on 3D Vision (3DV)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"272","resultStr":"{\"title\":\"SceneNN: A Scene Meshes Dataset with aNNotations\",\"authors\":\"Binh-Son Hua, Quang-Hieu Pham, D. Nguyen, Minh-Khoi Tran, L. Yu, Sai-Kit Yeung\",\"doi\":\"10.1109/3DV.2016.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several RGB-D datasets have been publicized over the past few years for facilitating research in computer vision and robotics. However, the lack of comprehensive and fine-grained annotation in these RGB-D datasets has posed challenges to their widespread usage. In this paper, we introduce SceneNN, an RGB-D scene dataset consisting of 100 scenes. All scenes are reconstructed into triangle meshes and have per-vertex and per-pixel annotation. We further enriched the dataset with fine-grained information such as axis-aligned bounding boxes, oriented bounding boxes, and object poses. We used the dataset as a benchmark to evaluate the state-of-the-art methods on relevant research problems such as intrinsic decomposition and shape completion. Our dataset and annotation tools are available at http://www.scenenn.net.\",\"PeriodicalId\":425304,\"journal\":{\"name\":\"2016 Fourth International Conference on 3D Vision (3DV)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"272\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Fourth International Conference on 3D Vision (3DV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2016.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2016.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Several RGB-D datasets have been publicized over the past few years for facilitating research in computer vision and robotics. However, the lack of comprehensive and fine-grained annotation in these RGB-D datasets has posed challenges to their widespread usage. In this paper, we introduce SceneNN, an RGB-D scene dataset consisting of 100 scenes. All scenes are reconstructed into triangle meshes and have per-vertex and per-pixel annotation. We further enriched the dataset with fine-grained information such as axis-aligned bounding boxes, oriented bounding boxes, and object poses. We used the dataset as a benchmark to evaluate the state-of-the-art methods on relevant research problems such as intrinsic decomposition and shape completion. Our dataset and annotation tools are available at http://www.scenenn.net.