平均费雪信息优化量化测量使用加性独立噪声

Gokce Osman Balkan, S. Gezici
{"title":"平均费雪信息优化量化测量使用加性独立噪声","authors":"Gokce Osman Balkan, S. Gezici","doi":"10.1109/SIU.2010.5653626","DOIUrl":null,"url":null,"abstract":"Adding noise to nonlinear systems can enhance their performance. Additive noise benefits are observed also in parameter estimation problems based on quantized observations. In this study, the purpose is to find the optimal probability density function of additive noise, which is applied to observations before quantization, in those problems. First, optimal probability density function of noise is formulated in terms of an average Fisher information maximization problem. Then, it is proven that optimal additive “noise” can be represented by a constant signal level. This result, which means that randomization of additive signal levels is not needed for average Fisher information maximization, is supported with two numerical examples.","PeriodicalId":152297,"journal":{"name":"2010 IEEE 18th Signal Processing and Communications Applications Conference","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Average Fisher information optimization for quantized measurements using additive independent noise\",\"authors\":\"Gokce Osman Balkan, S. Gezici\",\"doi\":\"10.1109/SIU.2010.5653626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adding noise to nonlinear systems can enhance their performance. Additive noise benefits are observed also in parameter estimation problems based on quantized observations. In this study, the purpose is to find the optimal probability density function of additive noise, which is applied to observations before quantization, in those problems. First, optimal probability density function of noise is formulated in terms of an average Fisher information maximization problem. Then, it is proven that optimal additive “noise” can be represented by a constant signal level. This result, which means that randomization of additive signal levels is not needed for average Fisher information maximization, is supported with two numerical examples.\",\"PeriodicalId\":152297,\"journal\":{\"name\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2010.5653626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 18th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2010.5653626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在非线性系统中加入噪声可以提高系统的性能。在基于量化观测的参数估计问题中也观察到加性噪声的好处。本研究的目的是在这些问题中找到最优的加性噪声的概率密度函数,并将其应用于量化前的观测值。首先,根据平均费雪信息最大化问题,构造了噪声的最优概率密度函数。然后,证明了最优加性“噪声”可以用一个恒定的信号电平来表示。这一结果意味着平均费雪信息最大化不需要加性信号电平的随机化,并得到了两个数值例子的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Average Fisher information optimization for quantized measurements using additive independent noise
Adding noise to nonlinear systems can enhance their performance. Additive noise benefits are observed also in parameter estimation problems based on quantized observations. In this study, the purpose is to find the optimal probability density function of additive noise, which is applied to observations before quantization, in those problems. First, optimal probability density function of noise is formulated in terms of an average Fisher information maximization problem. Then, it is proven that optimal additive “noise” can be represented by a constant signal level. This result, which means that randomization of additive signal levels is not needed for average Fisher information maximization, is supported with two numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信