{"title":"基于注意机制的面部表情识别","authors":"Caixia Wang, Zhihui Wang, Dong Cui","doi":"10.1109/CISP-BMEI53629.2021.9624355","DOIUrl":null,"url":null,"abstract":"With the development of artificial intelligence, facial expression recognition (FER) has greatly improved performance in deep learning, but there is still a lot of room for improvement in the study of combining attention to focus the network on key parts of the face. For facial expression recognition, this paper designs a network model, which use spatial transformer network to transform the input image firstly, and then adding channel attention and spatial attention to the convolutional network. In addition, in this paper, the GELU activation function is used in the convolutional network, which improves the recognition rate of facial expressions to a certain extent.","PeriodicalId":131256,"journal":{"name":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Facial Expression Recognition with Attention Mechanism\",\"authors\":\"Caixia Wang, Zhihui Wang, Dong Cui\",\"doi\":\"10.1109/CISP-BMEI53629.2021.9624355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of artificial intelligence, facial expression recognition (FER) has greatly improved performance in deep learning, but there is still a lot of room for improvement in the study of combining attention to focus the network on key parts of the face. For facial expression recognition, this paper designs a network model, which use spatial transformer network to transform the input image firstly, and then adding channel attention and spatial attention to the convolutional network. In addition, in this paper, the GELU activation function is used in the convolutional network, which improves the recognition rate of facial expressions to a certain extent.\",\"PeriodicalId\":131256,\"journal\":{\"name\":\"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI53629.2021.9624355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI53629.2021.9624355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Facial Expression Recognition with Attention Mechanism
With the development of artificial intelligence, facial expression recognition (FER) has greatly improved performance in deep learning, but there is still a lot of room for improvement in the study of combining attention to focus the network on key parts of the face. For facial expression recognition, this paper designs a network model, which use spatial transformer network to transform the input image firstly, and then adding channel attention and spatial attention to the convolutional network. In addition, in this paper, the GELU activation function is used in the convolutional network, which improves the recognition rate of facial expressions to a certain extent.