带有信号的时间关系:以意大利语时间介词为例

Tommaso Caselli, F. Dell’Orletta, I. Prodanof
{"title":"带有信号的时间关系:以意大利语时间介词为例","authors":"Tommaso Caselli, F. Dell’Orletta, I. Prodanof","doi":"10.1109/TIME.2009.23","DOIUrl":null,"url":null,"abstract":"This paper presents a Maximum Entropy tagger for the identification of intra-sentential temporal relations between temporal expressions and eventualities mediated by temporal signals in constructions of the kind \"eventuality + signal + temporal relation\". The tagger reports an accuracy rate of 90.8%, outperforming the baseline (81.8%). One of the main results of this work is represented by the identification of a set of robust features which may be automatically obtained with a relative computational effort.","PeriodicalId":163298,"journal":{"name":"2009 16th International Symposium on Temporal Representation and Reasoning","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal Relations with Signals: The Case of Italian Temporal Prepositions\",\"authors\":\"Tommaso Caselli, F. Dell’Orletta, I. Prodanof\",\"doi\":\"10.1109/TIME.2009.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Maximum Entropy tagger for the identification of intra-sentential temporal relations between temporal expressions and eventualities mediated by temporal signals in constructions of the kind \\\"eventuality + signal + temporal relation\\\". The tagger reports an accuracy rate of 90.8%, outperforming the baseline (81.8%). One of the main results of this work is represented by the identification of a set of robust features which may be automatically obtained with a relative computational effort.\",\"PeriodicalId\":163298,\"journal\":{\"name\":\"2009 16th International Symposium on Temporal Representation and Reasoning\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 16th International Symposium on Temporal Representation and Reasoning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIME.2009.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Symposium on Temporal Representation and Reasoning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIME.2009.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种最大熵标注器,用于识别“结果+信号+时间关系”结构中时间表达式与由时间信号介导的结果之间的句内时间关系。标注器报告的准确率为90.8%,优于基线(81.8%)。这项工作的主要结果之一是通过识别一组鲁棒特征来表示,这些特征可以通过相对的计算工作量自动获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal Relations with Signals: The Case of Italian Temporal Prepositions
This paper presents a Maximum Entropy tagger for the identification of intra-sentential temporal relations between temporal expressions and eventualities mediated by temporal signals in constructions of the kind "eventuality + signal + temporal relation". The tagger reports an accuracy rate of 90.8%, outperforming the baseline (81.8%). One of the main results of this work is represented by the identification of a set of robust features which may be automatically obtained with a relative computational effort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信