音频背景噪声降噪的频域多通道期望最大化算法

Jichi Deng, S. Godsill
{"title":"音频背景噪声降噪的频域多通道期望最大化算法","authors":"Jichi Deng, S. Godsill","doi":"10.1109/WASPAA.2013.6701859","DOIUrl":null,"url":null,"abstract":"In this paper we implement expectation maximization (EM) based methods in the short time Fourier transform (STFT) domain for background noise reduction in multi-channel systems. The models introduce a Wishart prior for the unknown signal covariance matrix. An EM algorithm is used to maximise the posterior probability for the clean signal, approaching a stationary point of the distribution with increasing iterations. The background noise is modelled as white and stationary in this initial work. The proposed methods are found to outperform a multi-channel Wiener filter in terms of residual noise artefacts and MSE for a small initial trial.","PeriodicalId":341888,"journal":{"name":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency domain multi-channel expectation maximization algorithm for audio background noise reduction\",\"authors\":\"Jichi Deng, S. Godsill\",\"doi\":\"10.1109/WASPAA.2013.6701859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we implement expectation maximization (EM) based methods in the short time Fourier transform (STFT) domain for background noise reduction in multi-channel systems. The models introduce a Wishart prior for the unknown signal covariance matrix. An EM algorithm is used to maximise the posterior probability for the clean signal, approaching a stationary point of the distribution with increasing iterations. The background noise is modelled as white and stationary in this initial work. The proposed methods are found to outperform a multi-channel Wiener filter in terms of residual noise artefacts and MSE for a small initial trial.\",\"PeriodicalId\":341888,\"journal\":{\"name\":\"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WASPAA.2013.6701859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA.2013.6701859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在短时傅里叶变换(STFT)域实现了基于期望最大化(EM)的多通道系统背景噪声抑制方法。该模型对未知信号协方差矩阵引入了Wishart先验。EM算法用于最大化干净信号的后验概率,随着迭代次数的增加接近分布的平稳点。在最初的工作中,背景噪声被建模为白色和静止的。在一个小的初始试验中,发现所提出的方法在残余噪声伪像和MSE方面优于多通道维纳滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency domain multi-channel expectation maximization algorithm for audio background noise reduction
In this paper we implement expectation maximization (EM) based methods in the short time Fourier transform (STFT) domain for background noise reduction in multi-channel systems. The models introduce a Wishart prior for the unknown signal covariance matrix. An EM algorithm is used to maximise the posterior probability for the clean signal, approaching a stationary point of the distribution with increasing iterations. The background noise is modelled as white and stationary in this initial work. The proposed methods are found to outperform a multi-channel Wiener filter in terms of residual noise artefacts and MSE for a small initial trial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信