基于曲线变换和粒子群优化的虹膜识别

A. Ahamed, Syed Irfan Ali Meerza
{"title":"基于曲线变换和粒子群优化的虹膜识别","authors":"A. Ahamed, Syed Irfan Ali Meerza","doi":"10.1109/WNYISPW57858.2022.9983494","DOIUrl":null,"url":null,"abstract":"This study proposes a low complexity iris recognition technique using particle swarm optimization in the curvelet domain transformation. We utilize the standard CASIA-Iris V4 database to test the performance of our proposed method as compared to other state-of-the-art methods. The proposed method provides 99.4% accuracy in recognizing iris images. In addition, our proposed method requires 50% less computational time compared to other state-of-the-art methods.","PeriodicalId":427869,"journal":{"name":"2022 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iris recognition using curvelet transform and accuracy maximization by particle swarm optimization\",\"authors\":\"A. Ahamed, Syed Irfan Ali Meerza\",\"doi\":\"10.1109/WNYISPW57858.2022.9983494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a low complexity iris recognition technique using particle swarm optimization in the curvelet domain transformation. We utilize the standard CASIA-Iris V4 database to test the performance of our proposed method as compared to other state-of-the-art methods. The proposed method provides 99.4% accuracy in recognizing iris images. In addition, our proposed method requires 50% less computational time compared to other state-of-the-art methods.\",\"PeriodicalId\":427869,\"journal\":{\"name\":\"2022 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WNYISPW57858.2022.9983494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYISPW57858.2022.9983494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于曲线域变换的粒子群优化的低复杂度虹膜识别技术。我们使用标准的CASIA-Iris V4数据库来测试我们提出的方法的性能,并与其他最先进的方法进行比较。该方法对虹膜图像的识别准确率为99.4%。此外,与其他最先进的方法相比,我们提出的方法所需的计算时间减少了50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iris recognition using curvelet transform and accuracy maximization by particle swarm optimization
This study proposes a low complexity iris recognition technique using particle swarm optimization in the curvelet domain transformation. We utilize the standard CASIA-Iris V4 database to test the performance of our proposed method as compared to other state-of-the-art methods. The proposed method provides 99.4% accuracy in recognizing iris images. In addition, our proposed method requires 50% less computational time compared to other state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信