具有电压模式模拟自旋算子的20x28自旋混合内存退火计算机用于解决组合优化问题

Junjie Mu, Yuqi Su, Bongjin Kim
{"title":"具有电压模式模拟自旋算子的20x28自旋混合内存退火计算机用于解决组合优化问题","authors":"Junjie Mu, Yuqi Su, Bongjin Kim","doi":"10.23919/VLSICircuits52068.2021.9492453","DOIUrl":null,"url":null,"abstract":"Computationally-expensive combinatorial optimization problems can be solved effectively via finding the ground state of the system by annealing computers. This work proposes a hybrid analog-digital implementation of an annealing computer that achieves 1.58x improvement in the area and >3x reduction in annealing time compared with recent works. The test-chip is fabricated using the 65nm process, and the measured power consumption is 9.9mW at 0.8V and 320MHZ.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A 20x28 Spins Hybrid In-Memory Annealing Computer Featuring Voltage-Mode Analog Spin Operator for Solving Combinatorial Optimization Problems\",\"authors\":\"Junjie Mu, Yuqi Su, Bongjin Kim\",\"doi\":\"10.23919/VLSICircuits52068.2021.9492453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computationally-expensive combinatorial optimization problems can be solved effectively via finding the ground state of the system by annealing computers. This work proposes a hybrid analog-digital implementation of an annealing computer that achieves 1.58x improvement in the area and >3x reduction in annealing time compared with recent works. The test-chip is fabricated using the 65nm process, and the measured power consumption is 9.9mW at 0.8V and 320MHZ.\",\"PeriodicalId\":106356,\"journal\":{\"name\":\"2021 Symposium on VLSI Circuits\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSICircuits52068.2021.9492453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用退火计算机求解系统的基态,可以有效地解决计算量大的组合优化问题。这项工作提出了一种退火计算机的混合模拟-数字实现,与最近的工作相比,该计算机的面积提高了1.58倍,退火时间减少了>3倍。测试芯片采用65nm工艺制作,在0.8V和320MHZ下的实测功耗为9.9mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 20x28 Spins Hybrid In-Memory Annealing Computer Featuring Voltage-Mode Analog Spin Operator for Solving Combinatorial Optimization Problems
Computationally-expensive combinatorial optimization problems can be solved effectively via finding the ground state of the system by annealing computers. This work proposes a hybrid analog-digital implementation of an annealing computer that achieves 1.58x improvement in the area and >3x reduction in annealing time compared with recent works. The test-chip is fabricated using the 65nm process, and the measured power consumption is 9.9mW at 0.8V and 320MHZ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信