评估数据驱动的统计人体运动重建的协方差矩阵约束

Christos Mousas, Paul F. Newbury, C. Anagnostopoulos
{"title":"评估数据驱动的统计人体运动重建的协方差矩阵约束","authors":"Christos Mousas, Paul F. Newbury, C. Anagnostopoulos","doi":"10.1145/2643188.2643199","DOIUrl":null,"url":null,"abstract":"This paper presents the evaluation process of the character's motion reconstruction while constraints are applied to the covariance matrix of the motion prior learning process. For the evaluation process, a maximum a posteriori (MAP) framework is first generated, which receives input trajectories and reconstructs the motion of the character. Then, using various methods to constrain the covariance matrix, information that reflects certain assumptions about the motion reconstruction process is retrieved. Each of the covariance matrix constraints are evaluated by its ability to reconstruct the desired motion sequences either by using a large amount of motion data or by using a small dataset that contains only specific motions.","PeriodicalId":115384,"journal":{"name":"Proceedings of the 30th Spring Conference on Computer Graphics","volume":"328 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Evaluating the covariance matrix constraints for data-driven statistical human motion reconstruction\",\"authors\":\"Christos Mousas, Paul F. Newbury, C. Anagnostopoulos\",\"doi\":\"10.1145/2643188.2643199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the evaluation process of the character's motion reconstruction while constraints are applied to the covariance matrix of the motion prior learning process. For the evaluation process, a maximum a posteriori (MAP) framework is first generated, which receives input trajectories and reconstructs the motion of the character. Then, using various methods to constrain the covariance matrix, information that reflects certain assumptions about the motion reconstruction process is retrieved. Each of the covariance matrix constraints are evaluated by its ability to reconstruct the desired motion sequences either by using a large amount of motion data or by using a small dataset that contains only specific motions.\",\"PeriodicalId\":115384,\"journal\":{\"name\":\"Proceedings of the 30th Spring Conference on Computer Graphics\",\"volume\":\"328 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th Spring Conference on Computer Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2643188.2643199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th Spring Conference on Computer Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2643188.2643199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在对运动先验学习过程的协方差矩阵施加约束的同时,提出了对人物运动重建的评价过程。对于评估过程,首先生成一个最大后验(MAP)框架,该框架接收输入轨迹并重建角色的运动。然后,使用各种方法约束协方差矩阵,检索反映运动重建过程某些假设的信息。每个协方差矩阵约束通过使用大量运动数据或使用仅包含特定运动的小数据集重建所需运动序列的能力来评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the covariance matrix constraints for data-driven statistical human motion reconstruction
This paper presents the evaluation process of the character's motion reconstruction while constraints are applied to the covariance matrix of the motion prior learning process. For the evaluation process, a maximum a posteriori (MAP) framework is first generated, which receives input trajectories and reconstructs the motion of the character. Then, using various methods to constrain the covariance matrix, information that reflects certain assumptions about the motion reconstruction process is retrieved. Each of the covariance matrix constraints are evaluated by its ability to reconstruct the desired motion sequences either by using a large amount of motion data or by using a small dataset that contains only specific motions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信