减轻上肢重量的外骨骼控制设计

Siti Khadijah Ali, M. Tokhi
{"title":"减轻上肢重量的外骨骼控制设计","authors":"Siti Khadijah Ali, M. Tokhi","doi":"10.1109/INCAE.2018.8579374","DOIUrl":null,"url":null,"abstract":"One of the most common problems in humans is a muscle fatigue. Exoskeletons are known as one of the solution to deal with human muscle fatigue. However, several issues related to the development of exoskeletons for such a case have been identified. One of these is the control mechanism. Thus, the objective of this paper is to investigate development of a control strategy for the upper-limb exoskeleton. In this paper, a new control mechanism for an upper-limb exoskeleton is proposed. A fuzzy-based PD controller and PID are used in the proposed control mechanism, and a comparative assessment of the performance of both controllers is made. The results show that the control mechanism with fuzzy-based PD controller performs better than the PID controller in terms of trajectory tracking accuracy and control torque analysis.","PeriodicalId":387859,"journal":{"name":"2018 International Conference on Applied Engineering (ICAE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Control Design of a De-Weighting Upper Limb Exoskeleton\",\"authors\":\"Siti Khadijah Ali, M. Tokhi\",\"doi\":\"10.1109/INCAE.2018.8579374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most common problems in humans is a muscle fatigue. Exoskeletons are known as one of the solution to deal with human muscle fatigue. However, several issues related to the development of exoskeletons for such a case have been identified. One of these is the control mechanism. Thus, the objective of this paper is to investigate development of a control strategy for the upper-limb exoskeleton. In this paper, a new control mechanism for an upper-limb exoskeleton is proposed. A fuzzy-based PD controller and PID are used in the proposed control mechanism, and a comparative assessment of the performance of both controllers is made. The results show that the control mechanism with fuzzy-based PD controller performs better than the PID controller in terms of trajectory tracking accuracy and control torque analysis.\",\"PeriodicalId\":387859,\"journal\":{\"name\":\"2018 International Conference on Applied Engineering (ICAE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Applied Engineering (ICAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INCAE.2018.8579374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Applied Engineering (ICAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCAE.2018.8579374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

肌肉疲劳是人类最常见的问题之一。外骨骼被认为是解决人体肌肉疲劳的解决方案之一。然而,已经确定了与这种情况下外骨骼发展有关的几个问题。其中之一是控制机制。因此,本文的目的是研究上肢外骨骼控制策略的发展。本文提出了一种新的上肢外骨骼控制机构。提出了一种基于模糊的PD控制器和PID控制器,并对两种控制器的性能进行了比较评价。结果表明,基于模糊PD控制器的控制机构在轨迹跟踪精度和控制转矩分析方面优于PID控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control Design of a De-Weighting Upper Limb Exoskeleton
One of the most common problems in humans is a muscle fatigue. Exoskeletons are known as one of the solution to deal with human muscle fatigue. However, several issues related to the development of exoskeletons for such a case have been identified. One of these is the control mechanism. Thus, the objective of this paper is to investigate development of a control strategy for the upper-limb exoskeleton. In this paper, a new control mechanism for an upper-limb exoskeleton is proposed. A fuzzy-based PD controller and PID are used in the proposed control mechanism, and a comparative assessment of the performance of both controllers is made. The results show that the control mechanism with fuzzy-based PD controller performs better than the PID controller in terms of trajectory tracking accuracy and control torque analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信