PSD矩阵歧管上的多传感器信号处理

K. M. Wong, Jian-Kang Zhang, Huiying Jiang
{"title":"PSD矩阵歧管上的多传感器信号处理","authors":"K. M. Wong, Jian-Kang Zhang, Huiying Jiang","doi":"10.1109/SAM.2016.7569757","DOIUrl":null,"url":null,"abstract":"We propose to use the power spectral density (PSD) matrices of the received signals of a multi-sensor system as the feature of processing. PSD matrices have structural constraints and they form a manifold in signal space. We introduce two new Riemannian distance (RD) measures on the PSD matrix manifold and developed algorithms to locate the means and medians of PSD matrices in terms of these RD. These concepts are then applied to the detection of narrow-band sonar signals in noise and the results are encouraging.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-sensor signal processing on a PSD matrix manifold\",\"authors\":\"K. M. Wong, Jian-Kang Zhang, Huiying Jiang\",\"doi\":\"10.1109/SAM.2016.7569757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose to use the power spectral density (PSD) matrices of the received signals of a multi-sensor system as the feature of processing. PSD matrices have structural constraints and they form a manifold in signal space. We introduce two new Riemannian distance (RD) measures on the PSD matrix manifold and developed algorithms to locate the means and medians of PSD matrices in terms of these RD. These concepts are then applied to the detection of narrow-band sonar signals in noise and the results are encouraging.\",\"PeriodicalId\":159236,\"journal\":{\"name\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2016.7569757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们建议使用多传感器系统接收信号的功率谱密度(PSD)矩阵作为处理特征。PSD矩阵具有结构约束,在信号空间中形成流形。我们在PSD矩阵流形上引入了两种新的黎曼距离(RD)度量,并开发了基于这些RD来定位PSD矩阵均值和中值的算法。然后将这些概念应用于噪声中窄带声纳信号的检测,结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-sensor signal processing on a PSD matrix manifold
We propose to use the power spectral density (PSD) matrices of the received signals of a multi-sensor system as the feature of processing. PSD matrices have structural constraints and they form a manifold in signal space. We introduce two new Riemannian distance (RD) measures on the PSD matrix manifold and developed algorithms to locate the means and medians of PSD matrices in terms of these RD. These concepts are then applied to the detection of narrow-band sonar signals in noise and the results are encouraging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信