{"title":"一个5/2n/sup 2/-下界n/spl乘以任意域上的/n矩阵乘法的秩","authors":"M. Blaser","doi":"10.1109/SFFCS.1999.814576","DOIUrl":null,"url":null,"abstract":"We prove a lower bound of 5/2n/sup 2/-3n for the rank of n/spl times/n-matrix multiplication over an arbitrary field. Similar bounds hold for the rank of the multiplication in noncommutative division algebras and for the multiplication of upper triangular matrices.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"A 5/2n/sup 2/-lower bound for the rank of n/spl times/n-matrix multiplication over arbitrary fields\",\"authors\":\"M. Blaser\",\"doi\":\"10.1109/SFFCS.1999.814576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a lower bound of 5/2n/sup 2/-3n for the rank of n/spl times/n-matrix multiplication over an arbitrary field. Similar bounds hold for the rank of the multiplication in noncommutative division algebras and for the multiplication of upper triangular matrices.\",\"PeriodicalId\":385047,\"journal\":{\"name\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFFCS.1999.814576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 5/2n/sup 2/-lower bound for the rank of n/spl times/n-matrix multiplication over arbitrary fields
We prove a lower bound of 5/2n/sup 2/-3n for the rank of n/spl times/n-matrix multiplication over an arbitrary field. Similar bounds hold for the rank of the multiplication in noncommutative division algebras and for the multiplication of upper triangular matrices.