基于个人流行倾向的小说推荐

Jinoh Oh, Sun Park, Hwanjo Yu, Min Song, Seung-Taek Park
{"title":"基于个人流行倾向的小说推荐","authors":"Jinoh Oh, Sun Park, Hwanjo Yu, Min Song, Seung-Taek Park","doi":"10.1109/ICDM.2011.110","DOIUrl":null,"url":null,"abstract":"Recently, novel recommender systems have attracted considerable attention in the research community. Recommending popular items may not always satisfy users. For example, although most users likely prefer popular items, such items are often not very surprising or novel because users may already know about the items. Also, such recommender systems hardly satisfy a group of users who prefer relatively obscure items. Existing novel recommender systems, however, still recommend mainly popular items or degrade the quality of recommendation. They do so because they do not consider the balance between novelty and preference-based recommendation. This paper proposes an efficient novel-recommendation method called Personal Popularity Tendency Matching (PPTM) which recommends novel items by considering an individual's Personal Popularity Tendency (or PPT). Considering PPT helps to diversify recommendations by reasonably penalizing popular items while improving the recommendation accuracy. We experimentally show that the proposed method, PPTM, is better than other methods in terms of both novelty and accuracy.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Novel Recommendation Based on Personal Popularity Tendency\",\"authors\":\"Jinoh Oh, Sun Park, Hwanjo Yu, Min Song, Seung-Taek Park\",\"doi\":\"10.1109/ICDM.2011.110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, novel recommender systems have attracted considerable attention in the research community. Recommending popular items may not always satisfy users. For example, although most users likely prefer popular items, such items are often not very surprising or novel because users may already know about the items. Also, such recommender systems hardly satisfy a group of users who prefer relatively obscure items. Existing novel recommender systems, however, still recommend mainly popular items or degrade the quality of recommendation. They do so because they do not consider the balance between novelty and preference-based recommendation. This paper proposes an efficient novel-recommendation method called Personal Popularity Tendency Matching (PPTM) which recommends novel items by considering an individual's Personal Popularity Tendency (or PPT). Considering PPT helps to diversify recommendations by reasonably penalizing popular items while improving the recommendation accuracy. We experimentally show that the proposed method, PPTM, is better than other methods in terms of both novelty and accuracy.\",\"PeriodicalId\":106216,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Data Mining\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2011.110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

近年来,新的推荐系统引起了学术界的广泛关注。推荐受欢迎的商品可能并不总能让用户满意。例如,尽管大多数用户可能更喜欢流行的项目,但这些项目通常不是很令人惊讶或新颖,因为用户可能已经知道这些项目。此外,这样的推荐系统很难满足那些喜欢相对模糊的项目的用户。然而,现有的新型推荐系统仍然主要推荐热门项目或降低推荐质量。他们这样做是因为他们没有考虑新颖性和基于偏好的推荐之间的平衡。本文提出了一种有效的小说推荐方法——个人流行趋势匹配(PPTM),该方法通过考虑个人的个人流行趋势(PPT)来推荐小说项目。考虑PPT有助于多样化推荐,合理惩罚热门项目,同时提高推荐的准确性。实验结果表明,该方法在新颖性和准确性方面都优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Recommendation Based on Personal Popularity Tendency
Recently, novel recommender systems have attracted considerable attention in the research community. Recommending popular items may not always satisfy users. For example, although most users likely prefer popular items, such items are often not very surprising or novel because users may already know about the items. Also, such recommender systems hardly satisfy a group of users who prefer relatively obscure items. Existing novel recommender systems, however, still recommend mainly popular items or degrade the quality of recommendation. They do so because they do not consider the balance between novelty and preference-based recommendation. This paper proposes an efficient novel-recommendation method called Personal Popularity Tendency Matching (PPTM) which recommends novel items by considering an individual's Personal Popularity Tendency (or PPT). Considering PPT helps to diversify recommendations by reasonably penalizing popular items while improving the recommendation accuracy. We experimentally show that the proposed method, PPTM, is better than other methods in terms of both novelty and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信