Ragheb Al-Ghezi, Yaroslav Getman, Ekaterina Voskoboinik, Mittul Singh, M. Kurimo
{"title":"低资源语言自发语音自动评分","authors":"Ragheb Al-Ghezi, Yaroslav Getman, Ekaterina Voskoboinik, Mittul Singh, M. Kurimo","doi":"10.1109/SLT54892.2023.10022381","DOIUrl":null,"url":null,"abstract":"Automatic spontaneous speaking assessment systems bring numerous advantages to second language (L2) learning and assessment such as promoting self-learning and reducing language teachers' workload. Conventionally, these systems are developed for languages with a large number of learners due to the abundance of training data, yet languages with fewer learners such as Finnish and Swedish remain at a disadvantage due to the scarcity of required training data. Nevertheless, recent advancements in self-supervised deep learning make it possible to develop automatic speech recognition systems with a reasonable amount of training data. In turn, this advancement makes it feasible to develop systems for automatically assessing spoken proficiency of learners of underresourced languages: L2 Finnish and Finland Swedish. Our work evaluates the overall performance of the L2 ASR systems as well as the the rating systems compared to human reference ratings for both languages.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic Rating of Spontaneous Speech for Low-Resource Languages\",\"authors\":\"Ragheb Al-Ghezi, Yaroslav Getman, Ekaterina Voskoboinik, Mittul Singh, M. Kurimo\",\"doi\":\"10.1109/SLT54892.2023.10022381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic spontaneous speaking assessment systems bring numerous advantages to second language (L2) learning and assessment such as promoting self-learning and reducing language teachers' workload. Conventionally, these systems are developed for languages with a large number of learners due to the abundance of training data, yet languages with fewer learners such as Finnish and Swedish remain at a disadvantage due to the scarcity of required training data. Nevertheless, recent advancements in self-supervised deep learning make it possible to develop automatic speech recognition systems with a reasonable amount of training data. In turn, this advancement makes it feasible to develop systems for automatically assessing spoken proficiency of learners of underresourced languages: L2 Finnish and Finland Swedish. Our work evaluates the overall performance of the L2 ASR systems as well as the the rating systems compared to human reference ratings for both languages.\",\"PeriodicalId\":352002,\"journal\":{\"name\":\"2022 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT54892.2023.10022381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10022381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Rating of Spontaneous Speech for Low-Resource Languages
Automatic spontaneous speaking assessment systems bring numerous advantages to second language (L2) learning and assessment such as promoting self-learning and reducing language teachers' workload. Conventionally, these systems are developed for languages with a large number of learners due to the abundance of training data, yet languages with fewer learners such as Finnish and Swedish remain at a disadvantage due to the scarcity of required training data. Nevertheless, recent advancements in self-supervised deep learning make it possible to develop automatic speech recognition systems with a reasonable amount of training data. In turn, this advancement makes it feasible to develop systems for automatically assessing spoken proficiency of learners of underresourced languages: L2 Finnish and Finland Swedish. Our work evaluates the overall performance of the L2 ASR systems as well as the the rating systems compared to human reference ratings for both languages.