基于鱼子酱模拟的调度和Mimo波束选择的强化学习

João Borges, Ailton Pinto De Oliveira, Felipe Henrique Bastos E Bastos, Daniel Takashi Ne Do Nascimento Suzuki, Emerson Santos De Oliveira Junior, Lucas Matni Bezerra, C. Nahum, P. Batista, Aldebaro Barreto Da Rocha Klautau Junior
{"title":"基于鱼子酱模拟的调度和Mimo波束选择的强化学习","authors":"João Borges, Ailton Pinto De Oliveira, Felipe Henrique Bastos E Bastos, Daniel Takashi Ne Do Nascimento Suzuki, Emerson Santos De Oliveira Junior, Lucas Matni Bezerra, C. Nahum, P. Batista, Aldebaro Barreto Da Rocha Klautau Junior","doi":"10.23919/ITUK53220.2021.9662100","DOIUrl":null,"url":null,"abstract":"This paper describes a framework for research on Reinforcement Learning (RL) applied to scheduling and MIMO beam selection. This framework consists of asking the RL agent to schedule a user and then choose the index of a beamforming codebook to serve it. A key aspect of this problem is that the simulation of the communication system and the artificial intelligence engine is based on a virtual world created with AirSim and the Unreal Engine. These components enable the so-called CAVIAR methodology, which leads to highly realistic 3D scenarios. This paper describes the communication and RL modeling adopted in the framework and also presents statistics concerning the implemented RL environment, such as data traffic, as well as results for three baseline systems.","PeriodicalId":423554,"journal":{"name":"2021 ITU Kaleidoscope: Connecting Physical and Virtual Worlds (ITU K)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reinforcement Learning for Scheduling and Mimo beam Selection using Caviar Simulations\",\"authors\":\"João Borges, Ailton Pinto De Oliveira, Felipe Henrique Bastos E Bastos, Daniel Takashi Ne Do Nascimento Suzuki, Emerson Santos De Oliveira Junior, Lucas Matni Bezerra, C. Nahum, P. Batista, Aldebaro Barreto Da Rocha Klautau Junior\",\"doi\":\"10.23919/ITUK53220.2021.9662100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a framework for research on Reinforcement Learning (RL) applied to scheduling and MIMO beam selection. This framework consists of asking the RL agent to schedule a user and then choose the index of a beamforming codebook to serve it. A key aspect of this problem is that the simulation of the communication system and the artificial intelligence engine is based on a virtual world created with AirSim and the Unreal Engine. These components enable the so-called CAVIAR methodology, which leads to highly realistic 3D scenarios. This paper describes the communication and RL modeling adopted in the framework and also presents statistics concerning the implemented RL environment, such as data traffic, as well as results for three baseline systems.\",\"PeriodicalId\":423554,\"journal\":{\"name\":\"2021 ITU Kaleidoscope: Connecting Physical and Virtual Worlds (ITU K)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 ITU Kaleidoscope: Connecting Physical and Virtual Worlds (ITU K)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ITUK53220.2021.9662100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ITU Kaleidoscope: Connecting Physical and Virtual Worlds (ITU K)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ITUK53220.2021.9662100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文描述了一个用于调度和MIMO波束选择的强化学习研究框架。该框架包括要求RL代理调度用户,然后选择波束形成码本的索引为其服务。这个问题的一个关键方面是,通信系统和人工智能引擎的模拟是基于用AirSim和虚幻引擎创建的虚拟世界。这些组件使所谓的鱼子酱方法,导致高度逼真的3D场景。本文描述了框架中采用的通信和强化学习建模,并提供了有关实现的强化学习环境的统计数据,如数据流量,以及三个基线系统的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement Learning for Scheduling and Mimo beam Selection using Caviar Simulations
This paper describes a framework for research on Reinforcement Learning (RL) applied to scheduling and MIMO beam selection. This framework consists of asking the RL agent to schedule a user and then choose the index of a beamforming codebook to serve it. A key aspect of this problem is that the simulation of the communication system and the artificial intelligence engine is based on a virtual world created with AirSim and the Unreal Engine. These components enable the so-called CAVIAR methodology, which leads to highly realistic 3D scenarios. This paper describes the communication and RL modeling adopted in the framework and also presents statistics concerning the implemented RL environment, such as data traffic, as well as results for three baseline systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信