基于特征空间MLLR改进在线增量说话人自适应

Xiaodong Cui, Jian Xue, Bowen Zhou
{"title":"基于特征空间MLLR改进在线增量说话人自适应","authors":"Xiaodong Cui, Jian Xue, Bowen Zhou","doi":"10.1109/ASRU.2009.5373227","DOIUrl":null,"url":null,"abstract":"This paper investigates an eigen feature space maximum likelihood linear regression (fMLLR) scheme to improve the performance of online speaker adaptation in automatic speech recognition systems. In this stochastic-approximation-like framework, the traditional incremental fMLLR estimation is considered as a slowly changing mean of the eigen fMLLR. It helps the adaptation when only a limited amount of data is available at the beginning of the conversation. The scheme is shown to be able to balance the transformation estimation given the data and yields reasonable improvements for online systems.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Improving online incremental speaker adaptation with eigen feature space MLLR\",\"authors\":\"Xiaodong Cui, Jian Xue, Bowen Zhou\",\"doi\":\"10.1109/ASRU.2009.5373227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates an eigen feature space maximum likelihood linear regression (fMLLR) scheme to improve the performance of online speaker adaptation in automatic speech recognition systems. In this stochastic-approximation-like framework, the traditional incremental fMLLR estimation is considered as a slowly changing mean of the eigen fMLLR. It helps the adaptation when only a limited amount of data is available at the beginning of the conversation. The scheme is shown to be able to balance the transformation estimation given the data and yields reasonable improvements for online systems.\",\"PeriodicalId\":292194,\"journal\":{\"name\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2009.5373227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

为了提高自动语音识别系统中在线说话人自适应的性能,研究了一种特征空间最大似然线性回归(fMLLR)方案。在这种类似随机逼近的框架中,传统的增量fMLLR估计被认为是特征fMLLR的一个缓慢变化的平均值。当在对话开始时只有有限的数据可用时,它有助于适应。该方案能够平衡给定数据的转换估计,并对在线系统产生合理的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving online incremental speaker adaptation with eigen feature space MLLR
This paper investigates an eigen feature space maximum likelihood linear regression (fMLLR) scheme to improve the performance of online speaker adaptation in automatic speech recognition systems. In this stochastic-approximation-like framework, the traditional incremental fMLLR estimation is considered as a slowly changing mean of the eigen fMLLR. It helps the adaptation when only a limited amount of data is available at the beginning of the conversation. The scheme is shown to be able to balance the transformation estimation given the data and yields reasonable improvements for online systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信