Stefan Behrens, Daniel Kasprowski, Mark D. Powell, Arunima Ray
{"title":"摩天大楼是标准的:细节","authors":"Stefan Behrens, Daniel Kasprowski, Mark D. Powell, Arunima Ray","doi":"10.1093/oso/9780198841319.003.0028","DOIUrl":null,"url":null,"abstract":"‘Skyscrapers Are Standard: The Details’ provides a thorough and detailed proof that every skyscraper is homeomorphic to the standard 2-handle, relative to the attaching region. Results from decomposition space theory established in Part I and the constructive results from Part II are combined. The idea is to construct a subset of a skyscraper called the design, define an embedding of this subset into the standard 2-handle, and then consider the decomposition spaces obtained by quotienting out the connected components of the complement of this common subset. It is shown that the decomposition spaces are homeomorphic, and that both quotient maps are approximable by homeomorphisms. This chapter also shows that everything can be done fixing a neighbourhood of the attaching region. It is then deduced that skyscrapers are standard, as desired.","PeriodicalId":272723,"journal":{"name":"The Disc Embedding Theorem","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skyscrapers Are Standard: The Details\",\"authors\":\"Stefan Behrens, Daniel Kasprowski, Mark D. Powell, Arunima Ray\",\"doi\":\"10.1093/oso/9780198841319.003.0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‘Skyscrapers Are Standard: The Details’ provides a thorough and detailed proof that every skyscraper is homeomorphic to the standard 2-handle, relative to the attaching region. Results from decomposition space theory established in Part I and the constructive results from Part II are combined. The idea is to construct a subset of a skyscraper called the design, define an embedding of this subset into the standard 2-handle, and then consider the decomposition spaces obtained by quotienting out the connected components of the complement of this common subset. It is shown that the decomposition spaces are homeomorphic, and that both quotient maps are approximable by homeomorphisms. This chapter also shows that everything can be done fixing a neighbourhood of the attaching region. It is then deduced that skyscrapers are standard, as desired.\",\"PeriodicalId\":272723,\"journal\":{\"name\":\"The Disc Embedding Theorem\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Disc Embedding Theorem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198841319.003.0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Disc Embedding Theorem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198841319.003.0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
‘Skyscrapers Are Standard: The Details’ provides a thorough and detailed proof that every skyscraper is homeomorphic to the standard 2-handle, relative to the attaching region. Results from decomposition space theory established in Part I and the constructive results from Part II are combined. The idea is to construct a subset of a skyscraper called the design, define an embedding of this subset into the standard 2-handle, and then consider the decomposition spaces obtained by quotienting out the connected components of the complement of this common subset. It is shown that the decomposition spaces are homeomorphic, and that both quotient maps are approximable by homeomorphisms. This chapter also shows that everything can be done fixing a neighbourhood of the attaching region. It is then deduced that skyscrapers are standard, as desired.