关于n -正规算子和摩尔-彭罗斯逆的类

A. Elgues, S. Menkad
{"title":"关于n -正规算子和摩尔-彭罗斯逆的类","authors":"A. Elgues, S. Menkad","doi":"10.37418/amsj.12.1.1","DOIUrl":null,"url":null,"abstract":"Let $ T \\in B(H)$ be a bounded linear operator on a complex Hilbert space $H$. For $ n\\in \\mathbb{N } $, an operator $ T\\in B(H)$ is said to be n-normal if $ T^{n}T^{*}=T^{*}T^{n} $. In this paper we investigate a necessary and sufficient condition for the n-normality of $ ST $ and $ TS $, where $ S,T \\in B(H). $ As a consequence, we generalize Kaplansky theorem for normal operators to n-normal operators. Also, In this paper, we provide new characterizations of n-normal operators by certain conditions involving powers of Moore-Penrose inverse.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE CLASS OF $n$-NORMAL OPERATORS AND MOORE-PENROSE INVERSE\",\"authors\":\"A. Elgues, S. Menkad\",\"doi\":\"10.37418/amsj.12.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $ T \\\\in B(H)$ be a bounded linear operator on a complex Hilbert space $H$. For $ n\\\\in \\\\mathbb{N } $, an operator $ T\\\\in B(H)$ is said to be n-normal if $ T^{n}T^{*}=T^{*}T^{n} $. In this paper we investigate a necessary and sufficient condition for the n-normality of $ ST $ and $ TS $, where $ S,T \\\\in B(H). $ As a consequence, we generalize Kaplansky theorem for normal operators to n-normal operators. Also, In this paper, we provide new characterizations of n-normal operators by certain conditions involving powers of Moore-Penrose inverse.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.12.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$ T \in B(H)$是复希尔伯特空间$H$上的一个有界线性算子。对于$ n\in \mathbb{n} $,如果$ T^{n}T^{*}=T^{*}T^{n} $,则表示运算符$ T\in B(H)$是n正态的。本文研究了$ ST $和$ TS $的n正态性的一个充分必要条件,其中$ S,T \ In B(H)。因此,我们将正常算子的Kaplansky定理推广到n-正常算子。此外,本文还利用涉及摩尔-彭罗斯逆幂的某些条件,给出了n正规算子的新的表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE CLASS OF $n$-NORMAL OPERATORS AND MOORE-PENROSE INVERSE
Let $ T \in B(H)$ be a bounded linear operator on a complex Hilbert space $H$. For $ n\in \mathbb{N } $, an operator $ T\in B(H)$ is said to be n-normal if $ T^{n}T^{*}=T^{*}T^{n} $. In this paper we investigate a necessary and sufficient condition for the n-normality of $ ST $ and $ TS $, where $ S,T \in B(H). $ As a consequence, we generalize Kaplansky theorem for normal operators to n-normal operators. Also, In this paper, we provide new characterizations of n-normal operators by certain conditions involving powers of Moore-Penrose inverse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信