基于功耗可变性的机器学习的PCB识别

Anupam Golder, A. Raychowdhury
{"title":"基于功耗可变性的机器学习的PCB识别","authors":"Anupam Golder, A. Raychowdhury","doi":"10.1109/AICAS57966.2023.10168655","DOIUrl":null,"url":null,"abstract":"Manufacturing variability demonstrates significant variations in dynamic power consumption profiles during program execution, even if the printed circuit boards (PCB) are identical and the processors execute the same operations on the same data. In this work, we show how this variability can be leveraged to the benefit of manufacturers by utilizing machine learning (ML) based PCB identification. The proposed technique based on power consumption variability achieves 100% accuracy in identifying PCBs from their power consumption traces after training a linear discriminant analysis (LDA) classifier on a collection of 30 identical PCBs for two test sets collected several months apart.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PCB Identification Based on Machine Learning Utilizing Power Consumption Variability\",\"authors\":\"Anupam Golder, A. Raychowdhury\",\"doi\":\"10.1109/AICAS57966.2023.10168655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manufacturing variability demonstrates significant variations in dynamic power consumption profiles during program execution, even if the printed circuit boards (PCB) are identical and the processors execute the same operations on the same data. In this work, we show how this variability can be leveraged to the benefit of manufacturers by utilizing machine learning (ML) based PCB identification. The proposed technique based on power consumption variability achieves 100% accuracy in identifying PCBs from their power consumption traces after training a linear discriminant analysis (LDA) classifier on a collection of 30 identical PCBs for two test sets collected several months apart.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

即使印刷电路板(PCB)是相同的,处理器对相同的数据执行相同的操作,制造可变性也表明在程序执行期间动态功耗概况的显著变化。在这项工作中,我们展示了如何利用基于机器学习(ML)的PCB识别来利用这种可变性来为制造商带来好处。所提出的基于功耗变异性的技术在训练线性判别分析(LDA)分类器后,从功耗轨迹中识别pcb的准确率达到100%,该分类器对相隔几个月收集的两个测试集的30个相同的pcb进行了训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PCB Identification Based on Machine Learning Utilizing Power Consumption Variability
Manufacturing variability demonstrates significant variations in dynamic power consumption profiles during program execution, even if the printed circuit boards (PCB) are identical and the processors execute the same operations on the same data. In this work, we show how this variability can be leveraged to the benefit of manufacturers by utilizing machine learning (ML) based PCB identification. The proposed technique based on power consumption variability achieves 100% accuracy in identifying PCBs from their power consumption traces after training a linear discriminant analysis (LDA) classifier on a collection of 30 identical PCBs for two test sets collected several months apart.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信