从位置信息推断电动自行车的使用特点

Johannes Paefgen, F. Michahelles
{"title":"从位置信息推断电动自行车的使用特点","authors":"Johannes Paefgen, F. Michahelles","doi":"10.1145/1899662.1899667","DOIUrl":null,"url":null,"abstract":"This paper describes an experimental setup for the analysis of e-bike usage characteristics based on GPS data. Usage characteristics include parameters such as average and maximum velocity, trip lengths and distribution over daytime. Based on high resolution position measurement these parameters are extracted and compared to other studies on both e-bikes and conventional bicycles. We show that applying location technology to concurrent monitoring of a fleet of e-bikes yields higher quality in terms of resolution and accuracy (1), and is less intrusive (2) than obtaining these data by conventional user surveys. The findings form a proof-of-concept for the adoption of location technology to transportation and behavioral sciences and suggest further interdisciplinary collaboration in these fields.","PeriodicalId":320466,"journal":{"name":"International Workshop on Location and the Web","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Inferring usage characteristics of electric bicycles from position information\",\"authors\":\"Johannes Paefgen, F. Michahelles\",\"doi\":\"10.1145/1899662.1899667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an experimental setup for the analysis of e-bike usage characteristics based on GPS data. Usage characteristics include parameters such as average and maximum velocity, trip lengths and distribution over daytime. Based on high resolution position measurement these parameters are extracted and compared to other studies on both e-bikes and conventional bicycles. We show that applying location technology to concurrent monitoring of a fleet of e-bikes yields higher quality in terms of resolution and accuracy (1), and is less intrusive (2) than obtaining these data by conventional user surveys. The findings form a proof-of-concept for the adoption of location technology to transportation and behavioral sciences and suggest further interdisciplinary collaboration in these fields.\",\"PeriodicalId\":320466,\"journal\":{\"name\":\"International Workshop on Location and the Web\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Location and the Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1899662.1899667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Location and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1899662.1899667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文介绍了一种基于GPS数据的电动自行车使用特性分析实验装置。使用特征包括平均和最大速度、行程长度和白天分布等参数。基于高分辨率位置测量提取这些参数,并将其与其他研究结果进行比较。我们的研究表明,将定位技术应用于电动自行车车队的同步监测,在分辨率和准确性方面(1)产生更高的质量,并且比通过传统的用户调查获得这些数据(2)更具侵入性(2)。研究结果为将定位技术应用于交通和行为科学提供了概念证明,并建议在这些领域进一步开展跨学科合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring usage characteristics of electric bicycles from position information
This paper describes an experimental setup for the analysis of e-bike usage characteristics based on GPS data. Usage characteristics include parameters such as average and maximum velocity, trip lengths and distribution over daytime. Based on high resolution position measurement these parameters are extracted and compared to other studies on both e-bikes and conventional bicycles. We show that applying location technology to concurrent monitoring of a fleet of e-bikes yields higher quality in terms of resolution and accuracy (1), and is less intrusive (2) than obtaining these data by conventional user surveys. The findings form a proof-of-concept for the adoption of location technology to transportation and behavioral sciences and suggest further interdisciplinary collaboration in these fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信