关于多维积分的测试功能

W. J. Whiten, L. Kocis
{"title":"关于多维积分的测试功能","authors":"W. J. Whiten, L. Kocis","doi":"10.1145/214437.214440","DOIUrl":null,"url":null,"abstract":"Monte Carlo and quasi Monte Carlo (ie using low discrepancy sequences) methods (Bratley & Fox 1988, Joe & Sloan 1993, Krommer & Ueberhuber 1994, Lyness 1989, Niederreiter 1978, Sloan & Kachoyan 1987) are used to approximate an integral by the average value of function samples:[EQUATION 1]where v is the volume of integration (taken here to be the unit multi-dimensional cube) and x is a vector with an element for each of the dimensions of the multidimensional space. In the case of Monte Carlo the points xp are chosen at random, while in quasi Monte Carlo the points are chosen to cover the integration volume as uniformly as possible. For numerical integration over a large number of dimensions these two techniques are often the only methods available.","PeriodicalId":177516,"journal":{"name":"ACM Signum Newsletter","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regarding test functions for multi-dimensional integration\",\"authors\":\"W. J. Whiten, L. Kocis\",\"doi\":\"10.1145/214437.214440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monte Carlo and quasi Monte Carlo (ie using low discrepancy sequences) methods (Bratley & Fox 1988, Joe & Sloan 1993, Krommer & Ueberhuber 1994, Lyness 1989, Niederreiter 1978, Sloan & Kachoyan 1987) are used to approximate an integral by the average value of function samples:[EQUATION 1]where v is the volume of integration (taken here to be the unit multi-dimensional cube) and x is a vector with an element for each of the dimensions of the multidimensional space. In the case of Monte Carlo the points xp are chosen at random, while in quasi Monte Carlo the points are chosen to cover the integration volume as uniformly as possible. For numerical integration over a large number of dimensions these two techniques are often the only methods available.\",\"PeriodicalId\":177516,\"journal\":{\"name\":\"ACM Signum Newsletter\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Signum Newsletter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/214437.214440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Signum Newsletter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/214437.214440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

蒙特卡罗和拟蒙特卡罗(即使用低差异序列)方法(Bratley &Fox 1988, Joe &斯隆1993,克罗默&weberhuber 1994; Lyness 1989; Niederreiter 1978;Kachoyan 1987)用于通过函数样本的平均值来近似积分:[等式1]其中v是积分的体积(这里取为单位多维立方体),x是多维空间的每个维度都有一个元素的向量。在蒙特卡罗的情况下,点xp是随机选择的,而在拟蒙特卡罗中,点的选择是尽可能均匀地覆盖积分体积。对于大量维度的数值积分,这两种技术通常是唯一可用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regarding test functions for multi-dimensional integration
Monte Carlo and quasi Monte Carlo (ie using low discrepancy sequences) methods (Bratley & Fox 1988, Joe & Sloan 1993, Krommer & Ueberhuber 1994, Lyness 1989, Niederreiter 1978, Sloan & Kachoyan 1987) are used to approximate an integral by the average value of function samples:[EQUATION 1]where v is the volume of integration (taken here to be the unit multi-dimensional cube) and x is a vector with an element for each of the dimensions of the multidimensional space. In the case of Monte Carlo the points xp are chosen at random, while in quasi Monte Carlo the points are chosen to cover the integration volume as uniformly as possible. For numerical integration over a large number of dimensions these two techniques are often the only methods available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信