基于进化博弈的燃料电池并网能量管理策略

Weitao Zou, Jianwei Li, Hongwen He, Qingqing Yang, Cheng Wang
{"title":"基于进化博弈的燃料电池并网能量管理策略","authors":"Weitao Zou, Jianwei Li, Hongwen He, Qingqing Yang, Cheng Wang","doi":"10.1109/CVCI51460.2020.9338537","DOIUrl":null,"url":null,"abstract":"Clean and efficient fuel cell(FC) power systems have shown great potential as an alternative to distributed energy resources. Fuel cell interconnection can relieve the pressure on the grid and meet emergency power needs. A strategy of fuel cell energy management based on evolutionary game is proposed. In the game, the fuel cell energy scheduling problem is treated as a multi-population scenario. Each part of the population has its own mixing strategy. On the other hand, there is a corresponding relationship between pure strategy and mixed strategy. Thus, the strategy here can flexibly meet different demands of power grid. In order to verify the feasibility of this method, the performance of the proposed approach is tested on real data measured on a distribution transformer from the SOREA utility grid company in the region of Savoie, France. The simulation results are compared with the dynamic programming results to further verify the effectiveness of the control strategy,","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Energy Management Strategy for Fuel Cell to Grid based on Evolutionary Game\",\"authors\":\"Weitao Zou, Jianwei Li, Hongwen He, Qingqing Yang, Cheng Wang\",\"doi\":\"10.1109/CVCI51460.2020.9338537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clean and efficient fuel cell(FC) power systems have shown great potential as an alternative to distributed energy resources. Fuel cell interconnection can relieve the pressure on the grid and meet emergency power needs. A strategy of fuel cell energy management based on evolutionary game is proposed. In the game, the fuel cell energy scheduling problem is treated as a multi-population scenario. Each part of the population has its own mixing strategy. On the other hand, there is a corresponding relationship between pure strategy and mixed strategy. Thus, the strategy here can flexibly meet different demands of power grid. In order to verify the feasibility of this method, the performance of the proposed approach is tested on real data measured on a distribution transformer from the SOREA utility grid company in the region of Savoie, France. The simulation results are compared with the dynamic programming results to further verify the effectiveness of the control strategy,\",\"PeriodicalId\":119721,\"journal\":{\"name\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVCI51460.2020.9338537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

清洁高效的燃料电池(FC)发电系统作为分布式能源的替代方案已显示出巨大的潜力。燃料电池并网可以缓解电网压力,满足应急用电需求。提出了一种基于进化博弈的燃料电池能量管理策略。在该博弈中,燃料电池能量调度问题被视为一个多种群场景。人口的每个部分都有自己的混合策略。另一方面,纯策略与混合策略之间存在对应关系。因此,该策略可以灵活地满足电网的不同需求。为了验证该方法的可行性,在法国萨瓦地区SOREA公用电网公司的配电变压器上进行了实际数据测试。将仿真结果与动态规划结果进行对比,进一步验证了控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Energy Management Strategy for Fuel Cell to Grid based on Evolutionary Game
Clean and efficient fuel cell(FC) power systems have shown great potential as an alternative to distributed energy resources. Fuel cell interconnection can relieve the pressure on the grid and meet emergency power needs. A strategy of fuel cell energy management based on evolutionary game is proposed. In the game, the fuel cell energy scheduling problem is treated as a multi-population scenario. Each part of the population has its own mixing strategy. On the other hand, there is a corresponding relationship between pure strategy and mixed strategy. Thus, the strategy here can flexibly meet different demands of power grid. In order to verify the feasibility of this method, the performance of the proposed approach is tested on real data measured on a distribution transformer from the SOREA utility grid company in the region of Savoie, France. The simulation results are compared with the dynamic programming results to further verify the effectiveness of the control strategy,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信