Weitao Zou, Jianwei Li, Hongwen He, Qingqing Yang, Cheng Wang
{"title":"基于进化博弈的燃料电池并网能量管理策略","authors":"Weitao Zou, Jianwei Li, Hongwen He, Qingqing Yang, Cheng Wang","doi":"10.1109/CVCI51460.2020.9338537","DOIUrl":null,"url":null,"abstract":"Clean and efficient fuel cell(FC) power systems have shown great potential as an alternative to distributed energy resources. Fuel cell interconnection can relieve the pressure on the grid and meet emergency power needs. A strategy of fuel cell energy management based on evolutionary game is proposed. In the game, the fuel cell energy scheduling problem is treated as a multi-population scenario. Each part of the population has its own mixing strategy. On the other hand, there is a corresponding relationship between pure strategy and mixed strategy. Thus, the strategy here can flexibly meet different demands of power grid. In order to verify the feasibility of this method, the performance of the proposed approach is tested on real data measured on a distribution transformer from the SOREA utility grid company in the region of Savoie, France. The simulation results are compared with the dynamic programming results to further verify the effectiveness of the control strategy,","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Energy Management Strategy for Fuel Cell to Grid based on Evolutionary Game\",\"authors\":\"Weitao Zou, Jianwei Li, Hongwen He, Qingqing Yang, Cheng Wang\",\"doi\":\"10.1109/CVCI51460.2020.9338537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clean and efficient fuel cell(FC) power systems have shown great potential as an alternative to distributed energy resources. Fuel cell interconnection can relieve the pressure on the grid and meet emergency power needs. A strategy of fuel cell energy management based on evolutionary game is proposed. In the game, the fuel cell energy scheduling problem is treated as a multi-population scenario. Each part of the population has its own mixing strategy. On the other hand, there is a corresponding relationship between pure strategy and mixed strategy. Thus, the strategy here can flexibly meet different demands of power grid. In order to verify the feasibility of this method, the performance of the proposed approach is tested on real data measured on a distribution transformer from the SOREA utility grid company in the region of Savoie, France. The simulation results are compared with the dynamic programming results to further verify the effectiveness of the control strategy,\",\"PeriodicalId\":119721,\"journal\":{\"name\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVCI51460.2020.9338537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Energy Management Strategy for Fuel Cell to Grid based on Evolutionary Game
Clean and efficient fuel cell(FC) power systems have shown great potential as an alternative to distributed energy resources. Fuel cell interconnection can relieve the pressure on the grid and meet emergency power needs. A strategy of fuel cell energy management based on evolutionary game is proposed. In the game, the fuel cell energy scheduling problem is treated as a multi-population scenario. Each part of the population has its own mixing strategy. On the other hand, there is a corresponding relationship between pure strategy and mixed strategy. Thus, the strategy here can flexibly meet different demands of power grid. In order to verify the feasibility of this method, the performance of the proposed approach is tested on real data measured on a distribution transformer from the SOREA utility grid company in the region of Savoie, France. The simulation results are compared with the dynamic programming results to further verify the effectiveness of the control strategy,