O. Bichler, D. Querlioz, S. Thorpe, J. Bourgoin, C. Gamrat
{"title":"基于峰值时间依赖可塑性的非监督特征提取","authors":"O. Bichler, D. Querlioz, S. Thorpe, J. Bourgoin, C. Gamrat","doi":"10.1109/IJCNN.2011.6033311","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach to extract complex and overlapping temporally correlated features directly from spike-based dynamic vision sensors. A spiking neural network capable of performing multilayer unsupervised learning through Spike-Timing-Dependent Plasticity is introduced. It shows exceptional performances at detecting cars passing on a freeway recorded with a dynamic vision sensor, after only 10 minutes of fully unsupervised learning. Our methodology is thoroughly explained and first applied to a simpler example of ball trajectory learning. Two unsupervised learning strategies are investigated for advanced features learning. Robustness of our network to synaptic and neuron variability is assessed and virtual immunity to noise and jitter is demonstrated.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Unsupervised features extraction from asynchronous silicon retina through Spike-Timing-Dependent Plasticity\",\"authors\":\"O. Bichler, D. Querlioz, S. Thorpe, J. Bourgoin, C. Gamrat\",\"doi\":\"10.1109/IJCNN.2011.6033311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel approach to extract complex and overlapping temporally correlated features directly from spike-based dynamic vision sensors. A spiking neural network capable of performing multilayer unsupervised learning through Spike-Timing-Dependent Plasticity is introduced. It shows exceptional performances at detecting cars passing on a freeway recorded with a dynamic vision sensor, after only 10 minutes of fully unsupervised learning. Our methodology is thoroughly explained and first applied to a simpler example of ball trajectory learning. Two unsupervised learning strategies are investigated for advanced features learning. Robustness of our network to synaptic and neuron variability is assessed and virtual immunity to noise and jitter is demonstrated.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unsupervised features extraction from asynchronous silicon retina through Spike-Timing-Dependent Plasticity
In this paper, we present a novel approach to extract complex and overlapping temporally correlated features directly from spike-based dynamic vision sensors. A spiking neural network capable of performing multilayer unsupervised learning through Spike-Timing-Dependent Plasticity is introduced. It shows exceptional performances at detecting cars passing on a freeway recorded with a dynamic vision sensor, after only 10 minutes of fully unsupervised learning. Our methodology is thoroughly explained and first applied to a simpler example of ball trajectory learning. Two unsupervised learning strategies are investigated for advanced features learning. Robustness of our network to synaptic and neuron variability is assessed and virtual immunity to noise and jitter is demonstrated.