使用统计方法进行视觉对象分类的图像建模

Huanzhang Fu, A. Pujol, E. Dellandréa, Liming Chen
{"title":"使用统计方法进行视觉对象分类的图像建模","authors":"Huanzhang Fu, A. Pujol, E. Dellandréa, Liming Chen","doi":"10.1109/IPTA.2010.5586750","DOIUrl":null,"url":null,"abstract":"Since the challenging visual object categorization has attracted more and more attention in recent years, we present in this paper a novel approach called statistical measures based image modeling for this problem, thus avoiding the major difficulty of the popular “bag-of-visual words” approach which needs to fix a visual vocabulary size. We use a series of statistical measures over our proper region based color and segment features as well as the popular SIFT, extracted from an image, to model its visual content. Then this new image modeling will be fed to a certain classifier to accomplish the object categorization task. Several classification schemes combined with some feature selection techniques and fusion strategies have also been implemented and compared within the experimentation carried out on a subset of Pascal VOC dataset. The results show that merging the region based features and SIFT which are from different sources using an early fusion can actually improve classification performance, suggesting that these features managed to extract information which is complementary to each other.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image modeling using statistical measures for visual object categorization\",\"authors\":\"Huanzhang Fu, A. Pujol, E. Dellandréa, Liming Chen\",\"doi\":\"10.1109/IPTA.2010.5586750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the challenging visual object categorization has attracted more and more attention in recent years, we present in this paper a novel approach called statistical measures based image modeling for this problem, thus avoiding the major difficulty of the popular “bag-of-visual words” approach which needs to fix a visual vocabulary size. We use a series of statistical measures over our proper region based color and segment features as well as the popular SIFT, extracted from an image, to model its visual content. Then this new image modeling will be fed to a certain classifier to accomplish the object categorization task. Several classification schemes combined with some feature selection techniques and fusion strategies have also been implemented and compared within the experimentation carried out on a subset of Pascal VOC dataset. The results show that merging the region based features and SIFT which are from different sources using an early fusion can actually improve classification performance, suggesting that these features managed to extract information which is complementary to each other.\",\"PeriodicalId\":236574,\"journal\":{\"name\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2010.5586750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于具有挑战性的视觉对象分类近年来受到越来越多的关注,本文提出了一种基于统计度量的图像建模方法来解决这一问题,从而避免了流行的“视觉词袋”方法需要固定视觉词汇量的主要困难。我们在适当的区域上使用一系列基于颜色和部分特征的统计度量,以及从图像中提取的流行SIFT,来模拟其视觉内容。然后将这个新的图像建模馈送到某个分类器来完成对象分类任务。结合一些特征选择技术和融合策略的几种分类方案也在Pascal VOC数据集子集上进行了实验,并进行了比较。结果表明,将不同来源的区域特征和SIFT进行早期融合,可以有效地提高分类性能,表明这些特征能够提取出互补的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image modeling using statistical measures for visual object categorization
Since the challenging visual object categorization has attracted more and more attention in recent years, we present in this paper a novel approach called statistical measures based image modeling for this problem, thus avoiding the major difficulty of the popular “bag-of-visual words” approach which needs to fix a visual vocabulary size. We use a series of statistical measures over our proper region based color and segment features as well as the popular SIFT, extracted from an image, to model its visual content. Then this new image modeling will be fed to a certain classifier to accomplish the object categorization task. Several classification schemes combined with some feature selection techniques and fusion strategies have also been implemented and compared within the experimentation carried out on a subset of Pascal VOC dataset. The results show that merging the region based features and SIFT which are from different sources using an early fusion can actually improve classification performance, suggesting that these features managed to extract information which is complementary to each other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信