高斯信道的互信息和MMSE

Dongning Guo, S. Shamai, S. Verdú
{"title":"高斯信道的互信息和MMSE","authors":"Dongning Guo, S. Shamai, S. Verdú","doi":"10.1109/ISIT.2004.1365386","DOIUrl":null,"url":null,"abstract":"Consider arbitrarily distributed input signals observed in additive Gaussian noise. A new fundamental relationship is found between the input-output mutual information and the minimum mean-square error (MMSE) of an estimate of the input given the output: The derivative of the mutual information (nats) with respect to the signal-to-noise ratio (SNR) is equal to half the MMSE. This identity holds for both scalar and vector signals, as well as for discrete- and continuous-time noncausal MMSE estimation (smoothing). A consequence of the result is a new relationship in continuous-time nonlinear filtering: Regardless of the input statistics, the causal MMSE achieved at snr is equal to the expected value of the noncausal MMSE achieved with a channel whose SNR is chosen uniformly distributed between 0 and snr","PeriodicalId":269907,"journal":{"name":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Mutual information and MMSE in gaussian channels\",\"authors\":\"Dongning Guo, S. Shamai, S. Verdú\",\"doi\":\"10.1109/ISIT.2004.1365386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider arbitrarily distributed input signals observed in additive Gaussian noise. A new fundamental relationship is found between the input-output mutual information and the minimum mean-square error (MMSE) of an estimate of the input given the output: The derivative of the mutual information (nats) with respect to the signal-to-noise ratio (SNR) is equal to half the MMSE. This identity holds for both scalar and vector signals, as well as for discrete- and continuous-time noncausal MMSE estimation (smoothing). A consequence of the result is a new relationship in continuous-time nonlinear filtering: Regardless of the input statistics, the causal MMSE achieved at snr is equal to the expected value of the noncausal MMSE achieved with a channel whose SNR is chosen uniformly distributed between 0 and snr\",\"PeriodicalId\":269907,\"journal\":{\"name\":\"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2004.1365386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2004.1365386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

考虑在加性高斯噪声中观察到的任意分布的输入信号。在输入输出互信息和给定输出的输入估计的最小均方误差(MMSE)之间发现了一种新的基本关系:互信息(nats)相对于信噪比(SNR)的导数等于MMSE的一半。这个恒等式适用于标量和矢量信号,也适用于离散和连续时间的非因果MMSE估计(平滑)。该结果的结果是连续时间非线性滤波中的一种新关系:无论输入统计数据如何,在信噪比下获得的因果MMSE等于在信噪比均匀分布于0和snr之间的信道中获得的非因果MMSE的期望值
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mutual information and MMSE in gaussian channels
Consider arbitrarily distributed input signals observed in additive Gaussian noise. A new fundamental relationship is found between the input-output mutual information and the minimum mean-square error (MMSE) of an estimate of the input given the output: The derivative of the mutual information (nats) with respect to the signal-to-noise ratio (SNR) is equal to half the MMSE. This identity holds for both scalar and vector signals, as well as for discrete- and continuous-time noncausal MMSE estimation (smoothing). A consequence of the result is a new relationship in continuous-time nonlinear filtering: Regardless of the input statistics, the causal MMSE achieved at snr is equal to the expected value of the noncausal MMSE achieved with a channel whose SNR is chosen uniformly distributed between 0 and snr
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信