基于CUDA架构GPU的数值并行处理

Chengming Zou, Chunfen Xia, Guanghui Zhao
{"title":"基于CUDA架构GPU的数值并行处理","authors":"Chengming Zou, Chunfen Xia, Guanghui Zhao","doi":"10.1109/WNIS.2009.46","DOIUrl":null,"url":null,"abstract":"The characteristics of modern graphics processing unit (GPU) is programmable, high price / performance ratio and high speed . It has a strong ability to adapt the parallel calculation, Based on this, the article study the general method of GPU calculating and use compute unified device architecture (CUDA) to design new parallel algorithm to accelerate the matrix inversion and Binarization algorithm. The results show that with the increase of matrix dimension, GPU performs much better than CPU in increase multiple.","PeriodicalId":280001,"journal":{"name":"2009 International Conference on Wireless Networks and Information Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Numerical Parallel Processing Based on GPU with CUDA Architecture\",\"authors\":\"Chengming Zou, Chunfen Xia, Guanghui Zhao\",\"doi\":\"10.1109/WNIS.2009.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The characteristics of modern graphics processing unit (GPU) is programmable, high price / performance ratio and high speed . It has a strong ability to adapt the parallel calculation, Based on this, the article study the general method of GPU calculating and use compute unified device architecture (CUDA) to design new parallel algorithm to accelerate the matrix inversion and Binarization algorithm. The results show that with the increase of matrix dimension, GPU performs much better than CPU in increase multiple.\",\"PeriodicalId\":280001,\"journal\":{\"name\":\"2009 International Conference on Wireless Networks and Information Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wireless Networks and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WNIS.2009.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wireless Networks and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNIS.2009.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

现代图形处理器(GPU)的特点是可编程、高性价比和高速度。在此基础上,本文研究了GPU计算的一般方法,并利用计算统一设备架构(CUDA)设计了新的并行算法来加速矩阵反演和二值化算法。结果表明,随着矩阵维数的增加,GPU的性能明显优于CPU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Parallel Processing Based on GPU with CUDA Architecture
The characteristics of modern graphics processing unit (GPU) is programmable, high price / performance ratio and high speed . It has a strong ability to adapt the parallel calculation, Based on this, the article study the general method of GPU calculating and use compute unified device architecture (CUDA) to design new parallel algorithm to accelerate the matrix inversion and Binarization algorithm. The results show that with the increase of matrix dimension, GPU performs much better than CPU in increase multiple.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信