面向社交媒体动态实时分析的建模推荐系统

Shipra Goel, Muskan Banthia, Adwitiya Sinha
{"title":"面向社交媒体动态实时分析的建模推荐系统","authors":"Shipra Goel, Muskan Banthia, Adwitiya Sinha","doi":"10.1109/IC3.2018.8530458","DOIUrl":null,"url":null,"abstract":"With the increasing popularity of twitter, Sentiment analysis of data from twitter has become a research trend. With the help of Twitter API, large number of tweets can be retrieved in real time related to our interest for the analysis. Millions of tweets are posted daily which contain opinions of users around the world. The aim of this project is to develop a desktop application which present users with tweets they may have an interest in. This model analyzes the most used keyword and most mentioned username from the user timeline and henceforth recommend recent tweets with the same keyword from that user. The proposed model assists user in finding relevant tweets related to a particular keyword or hashtag which are categorized into positive and negative using sentimental analysis. The model also deals with different visualization techniques to illustrate the analysis of the most used keyword and mentioned username with the help of various R packages.","PeriodicalId":118388,"journal":{"name":"2018 Eleventh International Conference on Contemporary Computing (IC3)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modeling Recommendation System for Real Time Analysis of Social Media Dynamics\",\"authors\":\"Shipra Goel, Muskan Banthia, Adwitiya Sinha\",\"doi\":\"10.1109/IC3.2018.8530458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing popularity of twitter, Sentiment analysis of data from twitter has become a research trend. With the help of Twitter API, large number of tweets can be retrieved in real time related to our interest for the analysis. Millions of tweets are posted daily which contain opinions of users around the world. The aim of this project is to develop a desktop application which present users with tweets they may have an interest in. This model analyzes the most used keyword and most mentioned username from the user timeline and henceforth recommend recent tweets with the same keyword from that user. The proposed model assists user in finding relevant tweets related to a particular keyword or hashtag which are categorized into positive and negative using sentimental analysis. The model also deals with different visualization techniques to illustrate the analysis of the most used keyword and mentioned username with the help of various R packages.\",\"PeriodicalId\":118388,\"journal\":{\"name\":\"2018 Eleventh International Conference on Contemporary Computing (IC3)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Eleventh International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2018.8530458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eleventh International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2018.8530458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着twitter的日益普及,对twitter数据进行情感分析已经成为一种研究趋势。在Twitter API的帮助下,可以实时检索大量与我们的兴趣相关的tweet进行分析。每天有数百万条推文发布,其中包含了世界各地用户的观点。这个项目的目的是开发一个桌面应用程序,向用户展示他们可能感兴趣的推文。该模型分析用户时间轴中使用次数最多的关键字和被提及次数最多的用户名,然后推荐该用户使用相同关键字的最近推文。提出的模型帮助用户找到与特定关键字或标签相关的相关推文,并使用情感分析将其分类为积极和消极。该模型还处理不同的可视化技术,以说明在各种R包的帮助下最常用的关键字和提到的用户名的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Recommendation System for Real Time Analysis of Social Media Dynamics
With the increasing popularity of twitter, Sentiment analysis of data from twitter has become a research trend. With the help of Twitter API, large number of tweets can be retrieved in real time related to our interest for the analysis. Millions of tweets are posted daily which contain opinions of users around the world. The aim of this project is to develop a desktop application which present users with tweets they may have an interest in. This model analyzes the most used keyword and most mentioned username from the user timeline and henceforth recommend recent tweets with the same keyword from that user. The proposed model assists user in finding relevant tweets related to a particular keyword or hashtag which are categorized into positive and negative using sentimental analysis. The model also deals with different visualization techniques to illustrate the analysis of the most used keyword and mentioned username with the help of various R packages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信