智能建筑改造中点类型推断的聚类和时间序列特征评价

Zixiao Shi, G. Newsham, Long Chen, H. Gunay
{"title":"智能建筑改造中点类型推断的聚类和时间序列特征评价","authors":"Zixiao Shi, G. Newsham, Long Chen, H. Gunay","doi":"10.1145/3360322.3360839","DOIUrl":null,"url":null,"abstract":"Metadata inference for building automation system (BAS) is an increasingly important topic to promote wider adoption of smart building technologies. Metadata inference is used to automatically discover semantics within the BAS, such as labelling sensors, discover control variable relationships, etc. Clustering analysis has been applied in many previous research studies to achieve faster smart building retrofits through automated or semi-automated BAS point labelling. However, previous research using clustering only used small data sets of two to five buildings. This research examines the effectiveness of this approach on a broader scale with 40 commercial and institutional buildings and more than 65,000 labelled BAS points. Different clustering strategies with varying feature space and clustering algorithms are examined. Furthermore, this study compares which time series features and generation approach may enhance labelling efficiency. Positive results from this study support the effectiveness of applying clustering for point type inference. Results show the complimentary nature of additional time series features when the existing raw metadata from the BAS is less descriptive.","PeriodicalId":128826,"journal":{"name":"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Evaluation of Clustering and Time Series Features for Point Type Inference in Smart Building Retrofit\",\"authors\":\"Zixiao Shi, G. Newsham, Long Chen, H. Gunay\",\"doi\":\"10.1145/3360322.3360839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metadata inference for building automation system (BAS) is an increasingly important topic to promote wider adoption of smart building technologies. Metadata inference is used to automatically discover semantics within the BAS, such as labelling sensors, discover control variable relationships, etc. Clustering analysis has been applied in many previous research studies to achieve faster smart building retrofits through automated or semi-automated BAS point labelling. However, previous research using clustering only used small data sets of two to five buildings. This research examines the effectiveness of this approach on a broader scale with 40 commercial and institutional buildings and more than 65,000 labelled BAS points. Different clustering strategies with varying feature space and clustering algorithms are examined. Furthermore, this study compares which time series features and generation approach may enhance labelling efficiency. Positive results from this study support the effectiveness of applying clustering for point type inference. Results show the complimentary nature of additional time series features when the existing raw metadata from the BAS is less descriptive.\",\"PeriodicalId\":128826,\"journal\":{\"name\":\"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3360322.3360839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3360322.3360839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

建筑自动化系统(BAS)的元数据推理是推动智能建筑技术广泛应用的一个日益重要的课题。元数据推理用于自动发现BAS中的语义,如标记传感器,发现控制变量关系等。聚类分析已在许多先前的研究中应用,通过自动化或半自动BAS点标签实现更快的智能建筑改造。然而,以前使用聚类的研究只使用了2到5个建筑物的小数据集。本研究在更广泛的范围内考察了40个商业和机构建筑以及超过65,000个标有BAS点的方法的有效性。研究了不同特征空间下的聚类策略和聚类算法。此外,本研究比较了哪种时间序列特征和生成方法可以提高标记效率。本研究的积极结果支持将聚类应用于点类型推断的有效性。结果表明,当来自BAS的现有原始元数据描述性较差时,额外的时间序列特征具有互补性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Clustering and Time Series Features for Point Type Inference in Smart Building Retrofit
Metadata inference for building automation system (BAS) is an increasingly important topic to promote wider adoption of smart building technologies. Metadata inference is used to automatically discover semantics within the BAS, such as labelling sensors, discover control variable relationships, etc. Clustering analysis has been applied in many previous research studies to achieve faster smart building retrofits through automated or semi-automated BAS point labelling. However, previous research using clustering only used small data sets of two to five buildings. This research examines the effectiveness of this approach on a broader scale with 40 commercial and institutional buildings and more than 65,000 labelled BAS points. Different clustering strategies with varying feature space and clustering algorithms are examined. Furthermore, this study compares which time series features and generation approach may enhance labelling efficiency. Positive results from this study support the effectiveness of applying clustering for point type inference. Results show the complimentary nature of additional time series features when the existing raw metadata from the BAS is less descriptive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信