Bao Meng, Feng Pan, Jianqiang Yang, Dongsheng Li, M. Wan
{"title":"变形条件对电场作用下LZ91 Mg-Li合金超塑性变形行为的影响","authors":"Bao Meng, Feng Pan, Jianqiang Yang, Dongsheng Li, M. Wan","doi":"10.21741/9781644902615-12","DOIUrl":null,"url":null,"abstract":"Abstract. The electro-superplastic effect (ESP effect) can enhance the superplastic deformation ability of alloy, and can also make alloy with poor plasticity have superplastic properties. Diverse grain sizes of LZ91 Mg-Li alloy were successfully prepared through equal channel angular pressing (ECAP) process. In order to explore the superplastic deformation behavior of LZ91 Mg-Li alloy under the electric current, an electric field assisted superplastic uniaxial tensile test platform was designed and fabricated. A decreasing constant voltage electrification scheme was proposed, and the experiments under different current densities, initial strain rates and grain sizes were carried out. The results indicate that the true strain-stress curve of LZ91 Mg-Li alloy gradually comes to steady with the increase of current density, presenting a steady-state rheological characteristic. The initial strain rate has a significant effect on the superplastic deformation behavior of LZ91 Mg-Li alloy under high voltage condition. For the fine-grained LZ91 Mg-Li alloy, the electric field can effectively reduce the superplastic deformation temperature and considerably enhance the elongation. This paper enriches the understanding of the superplastic deformation behavior of LZ91 Mg-Li alloy under the action of electric field.","PeriodicalId":242571,"journal":{"name":"Superplasticity in Advanced Materials","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of deformation conditions on the superplastic deformation behavior of LZ91 Mg-Li alloy under electric field\",\"authors\":\"Bao Meng, Feng Pan, Jianqiang Yang, Dongsheng Li, M. Wan\",\"doi\":\"10.21741/9781644902615-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The electro-superplastic effect (ESP effect) can enhance the superplastic deformation ability of alloy, and can also make alloy with poor plasticity have superplastic properties. Diverse grain sizes of LZ91 Mg-Li alloy were successfully prepared through equal channel angular pressing (ECAP) process. In order to explore the superplastic deformation behavior of LZ91 Mg-Li alloy under the electric current, an electric field assisted superplastic uniaxial tensile test platform was designed and fabricated. A decreasing constant voltage electrification scheme was proposed, and the experiments under different current densities, initial strain rates and grain sizes were carried out. The results indicate that the true strain-stress curve of LZ91 Mg-Li alloy gradually comes to steady with the increase of current density, presenting a steady-state rheological characteristic. The initial strain rate has a significant effect on the superplastic deformation behavior of LZ91 Mg-Li alloy under high voltage condition. For the fine-grained LZ91 Mg-Li alloy, the electric field can effectively reduce the superplastic deformation temperature and considerably enhance the elongation. This paper enriches the understanding of the superplastic deformation behavior of LZ91 Mg-Li alloy under the action of electric field.\",\"PeriodicalId\":242571,\"journal\":{\"name\":\"Superplasticity in Advanced Materials\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superplasticity in Advanced Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21741/9781644902615-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superplasticity in Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21741/9781644902615-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of deformation conditions on the superplastic deformation behavior of LZ91 Mg-Li alloy under electric field
Abstract. The electro-superplastic effect (ESP effect) can enhance the superplastic deformation ability of alloy, and can also make alloy with poor plasticity have superplastic properties. Diverse grain sizes of LZ91 Mg-Li alloy were successfully prepared through equal channel angular pressing (ECAP) process. In order to explore the superplastic deformation behavior of LZ91 Mg-Li alloy under the electric current, an electric field assisted superplastic uniaxial tensile test platform was designed and fabricated. A decreasing constant voltage electrification scheme was proposed, and the experiments under different current densities, initial strain rates and grain sizes were carried out. The results indicate that the true strain-stress curve of LZ91 Mg-Li alloy gradually comes to steady with the increase of current density, presenting a steady-state rheological characteristic. The initial strain rate has a significant effect on the superplastic deformation behavior of LZ91 Mg-Li alloy under high voltage condition. For the fine-grained LZ91 Mg-Li alloy, the electric field can effectively reduce the superplastic deformation temperature and considerably enhance the elongation. This paper enriches the understanding of the superplastic deformation behavior of LZ91 Mg-Li alloy under the action of electric field.