vladg:一个非常快速的局部性近似模型,用于有规则访问模式的GPU内核

Mohsen Kiani, Amir Rajabzadeh
{"title":"vladg:一个非常快速的局部性近似模型,用于有规则访问模式的GPU内核","authors":"Mohsen Kiani, Amir Rajabzadeh","doi":"10.1109/ICCKE.2017.8167887","DOIUrl":null,"url":null,"abstract":"Performance modeling plays an important role for optimal hardware design and optimized application implementation. This paper presents a very low overhead performance model, called VLAG, to approximate the data localities exploited by GPU kernels. VLAG receives source code-level information to estimate per memory-access instruction, per data array, and per kernel localities within GPU kernels. VLAG is only applicable to kernels with regular memory access patterns. VLAG was experimentally evaluated using an NVIDIA Maxwell GPU. For two different Matrix Multiplication kernels, the average errors of 7.68% and 6.29%, was resulted, respectively. The slowdown of VLAG for MM was measured 1.4X which, comparing with other approaches such as trace-driven simulation, is negligible.","PeriodicalId":151934,"journal":{"name":"2017 7th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"VLAG: A very fast locality approximation model for GPU kernels with regular access patterns\",\"authors\":\"Mohsen Kiani, Amir Rajabzadeh\",\"doi\":\"10.1109/ICCKE.2017.8167887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance modeling plays an important role for optimal hardware design and optimized application implementation. This paper presents a very low overhead performance model, called VLAG, to approximate the data localities exploited by GPU kernels. VLAG receives source code-level information to estimate per memory-access instruction, per data array, and per kernel localities within GPU kernels. VLAG is only applicable to kernels with regular memory access patterns. VLAG was experimentally evaluated using an NVIDIA Maxwell GPU. For two different Matrix Multiplication kernels, the average errors of 7.68% and 6.29%, was resulted, respectively. The slowdown of VLAG for MM was measured 1.4X which, comparing with other approaches such as trace-driven simulation, is negligible.\",\"PeriodicalId\":151934,\"journal\":{\"name\":\"2017 7th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCKE.2017.8167887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE.2017.8167887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

性能建模对于优化硬件设计和优化应用实现具有重要作用。本文提出了一种非常低开销的性能模型,称为VLAG,用于近似GPU内核所利用的数据位置。VLAG接收源代码级信息,以估计GPU内核中的每个内存访问指令、每个数据数组和每个内核位置。VLAG仅适用于具有常规内存访问模式的内核。使用NVIDIA Maxwell GPU对VLAG进行了实验评估。对于两种不同的矩阵乘法核,平均误差分别为7.68%和6.29%。vladg对MM的减速测量为1.4倍,与其他方法(如轨迹驱动模拟)相比,可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VLAG: A very fast locality approximation model for GPU kernels with regular access patterns
Performance modeling plays an important role for optimal hardware design and optimized application implementation. This paper presents a very low overhead performance model, called VLAG, to approximate the data localities exploited by GPU kernels. VLAG receives source code-level information to estimate per memory-access instruction, per data array, and per kernel localities within GPU kernels. VLAG is only applicable to kernels with regular memory access patterns. VLAG was experimentally evaluated using an NVIDIA Maxwell GPU. For two different Matrix Multiplication kernels, the average errors of 7.68% and 6.29%, was resulted, respectively. The slowdown of VLAG for MM was measured 1.4X which, comparing with other approaches such as trace-driven simulation, is negligible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信