体育视频球跟踪的最大后验概率Viterbi数据关联算法

F. Yan, W. Christmas, J. Kittler
{"title":"体育视频球跟踪的最大后验概率Viterbi数据关联算法","authors":"F. Yan, W. Christmas, J. Kittler","doi":"10.1109/ICPR.2006.95","DOIUrl":null,"url":null,"abstract":"In this paper, we derive a data association algorithm for object tracking in a maximum a posteriori framework: the output of the algorithm is the sequence of measurement-to-target associations with maximum a posteriori probability. We model the object motion as a Markov process, and solve this otherwise combinatorially complex problem efficiently by applying the Viterbi algorithm. A method for combining forward and backward tracking results is also developed, to recover from tracking errors caused by abrupt motion changes of the object. The proposed algorithm is applied to broadcast tennis video to track a tennis ball. Experiments show that its performance is comparable to that of a computationally more expensive particle-filter-based algorithm","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Maximum A Posteriori Probability Viterbi Data Association Algorithm for Ball Tracking in Sports Video\",\"authors\":\"F. Yan, W. Christmas, J. Kittler\",\"doi\":\"10.1109/ICPR.2006.95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive a data association algorithm for object tracking in a maximum a posteriori framework: the output of the algorithm is the sequence of measurement-to-target associations with maximum a posteriori probability. We model the object motion as a Markov process, and solve this otherwise combinatorially complex problem efficiently by applying the Viterbi algorithm. A method for combining forward and backward tracking results is also developed, to recover from tracking errors caused by abrupt motion changes of the object. The proposed algorithm is applied to broadcast tennis video to track a tennis ball. Experiments show that its performance is comparable to that of a computationally more expensive particle-filter-based algorithm\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文推导了一种最大后验框架下的目标跟踪数据关联算法,该算法的输出是具有最大后验概率的测量到目标关联序列。我们将物体运动建模为一个马尔可夫过程,并应用Viterbi算法有效地解决了这个组合复杂的问题。提出了一种将前向跟踪结果与后向跟踪结果相结合的方法,以恢复由于目标运动突变引起的跟踪误差。将该算法应用于广播网球视频中,实现对网球的跟踪。实验表明,该算法的性能可与计算成本较高的基于粒子滤波的算法相媲美
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Maximum A Posteriori Probability Viterbi Data Association Algorithm for Ball Tracking in Sports Video
In this paper, we derive a data association algorithm for object tracking in a maximum a posteriori framework: the output of the algorithm is the sequence of measurement-to-target associations with maximum a posteriori probability. We model the object motion as a Markov process, and solve this otherwise combinatorially complex problem efficiently by applying the Viterbi algorithm. A method for combining forward and backward tracking results is also developed, to recover from tracking errors caused by abrupt motion changes of the object. The proposed algorithm is applied to broadcast tennis video to track a tennis ball. Experiments show that its performance is comparable to that of a computationally more expensive particle-filter-based algorithm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信