AlertMe

Angela Ning Ye, Zhiming Hu, Caleb Phillips, Iqbal Mohomed
{"title":"AlertMe","authors":"Angela Ning Ye, Zhiming Hu, Caleb Phillips, Iqbal Mohomed","doi":"10.1145/3434770.3459740","DOIUrl":null,"url":null,"abstract":"Advances in deep learning have enabled brand new video analytics systems and applications. Existing systems research on real-time video event detection does not consider matching based on natural language; rather, it focuses on using Domain Specific Languages that define spatio-temporal operators on video streams for efficient matching. Alternatively, research in the multimodal AI community on joint understanding of video and language focuses on applications such as language-based video retrieval, where videos may have been processed offline. In this work, we propose AlertMe, a multimodal-based live video trigger system that matches incoming video streams to a set of user-defined natural language triggers. We dynamically select the optimal sliding window size to extract feature vectors from different modalities in near real time. We also describe our approach to achieve on-device deployment by introducing a profiler to select runtime-efficient feature extractors. Lastly, we show that limiting the number of trigger candidates can significantly increase event detection performance in applications such as task following in AR glasses.","PeriodicalId":389020,"journal":{"name":"Proceedings of the 4th International Workshop on Edge Systems, Analytics and Networking","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"AlertMe\",\"authors\":\"Angela Ning Ye, Zhiming Hu, Caleb Phillips, Iqbal Mohomed\",\"doi\":\"10.1145/3434770.3459740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in deep learning have enabled brand new video analytics systems and applications. Existing systems research on real-time video event detection does not consider matching based on natural language; rather, it focuses on using Domain Specific Languages that define spatio-temporal operators on video streams for efficient matching. Alternatively, research in the multimodal AI community on joint understanding of video and language focuses on applications such as language-based video retrieval, where videos may have been processed offline. In this work, we propose AlertMe, a multimodal-based live video trigger system that matches incoming video streams to a set of user-defined natural language triggers. We dynamically select the optimal sliding window size to extract feature vectors from different modalities in near real time. We also describe our approach to achieve on-device deployment by introducing a profiler to select runtime-efficient feature extractors. Lastly, we show that limiting the number of trigger candidates can significantly increase event detection performance in applications such as task following in AR glasses.\",\"PeriodicalId\":389020,\"journal\":{\"name\":\"Proceedings of the 4th International Workshop on Edge Systems, Analytics and Networking\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Workshop on Edge Systems, Analytics and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3434770.3459740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Workshop on Edge Systems, Analytics and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3434770.3459740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
AlertMe
Advances in deep learning have enabled brand new video analytics systems and applications. Existing systems research on real-time video event detection does not consider matching based on natural language; rather, it focuses on using Domain Specific Languages that define spatio-temporal operators on video streams for efficient matching. Alternatively, research in the multimodal AI community on joint understanding of video and language focuses on applications such as language-based video retrieval, where videos may have been processed offline. In this work, we propose AlertMe, a multimodal-based live video trigger system that matches incoming video streams to a set of user-defined natural language triggers. We dynamically select the optimal sliding window size to extract feature vectors from different modalities in near real time. We also describe our approach to achieve on-device deployment by introducing a profiler to select runtime-efficient feature extractors. Lastly, we show that limiting the number of trigger candidates can significantly increase event detection performance in applications such as task following in AR glasses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信