{"title":"用于基于可信代理的仿真的一系列语言","authors":"S. Zschaler, F. Polack","doi":"10.1145/3426425.3426929","DOIUrl":null,"url":null,"abstract":"Simulation is a key tool for researching complex system behaviour. Agent-based simulation has been applied across domains, such as biology, health, economics and urban sciences. However, engineering robust, efficient, maintainable, and reliable agent-based simulations is challenging. We present a vision for engineering agent simulations comprising a family of domain-specific modelling languages (DSMLs) that integrates core software engineering, validation and simulation experimentation. We relate the vision to examples of principled simulation, to show how the DSMLs would improve robustness, efficiency, and maintainability of simulations. Focusing on how to demonstrate the fitness for purpose of a simulator, the envisaged approach supports bi-directional transparency and traceability between the original domain understanding to the implementation, interpretation of results and evaluation of hypotheses.","PeriodicalId":312792,"journal":{"name":"Proceedings of the 13th ACM SIGPLAN International Conference on Software Language Engineering","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A family of languages for trustworthy agent-based simulation\",\"authors\":\"S. Zschaler, F. Polack\",\"doi\":\"10.1145/3426425.3426929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulation is a key tool for researching complex system behaviour. Agent-based simulation has been applied across domains, such as biology, health, economics and urban sciences. However, engineering robust, efficient, maintainable, and reliable agent-based simulations is challenging. We present a vision for engineering agent simulations comprising a family of domain-specific modelling languages (DSMLs) that integrates core software engineering, validation and simulation experimentation. We relate the vision to examples of principled simulation, to show how the DSMLs would improve robustness, efficiency, and maintainability of simulations. Focusing on how to demonstrate the fitness for purpose of a simulator, the envisaged approach supports bi-directional transparency and traceability between the original domain understanding to the implementation, interpretation of results and evaluation of hypotheses.\",\"PeriodicalId\":312792,\"journal\":{\"name\":\"Proceedings of the 13th ACM SIGPLAN International Conference on Software Language Engineering\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM SIGPLAN International Conference on Software Language Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3426425.3426929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM SIGPLAN International Conference on Software Language Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3426425.3426929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A family of languages for trustworthy agent-based simulation
Simulation is a key tool for researching complex system behaviour. Agent-based simulation has been applied across domains, such as biology, health, economics and urban sciences. However, engineering robust, efficient, maintainable, and reliable agent-based simulations is challenging. We present a vision for engineering agent simulations comprising a family of domain-specific modelling languages (DSMLs) that integrates core software engineering, validation and simulation experimentation. We relate the vision to examples of principled simulation, to show how the DSMLs would improve robustness, efficiency, and maintainability of simulations. Focusing on how to demonstrate the fitness for purpose of a simulator, the envisaged approach supports bi-directional transparency and traceability between the original domain understanding to the implementation, interpretation of results and evaluation of hypotheses.