Fitzhugh-Nagumo神经元的低资源数字化实现

A. J. Leigh, Moslem Heidarpur, M. Mirhassani
{"title":"Fitzhugh-Nagumo神经元的低资源数字化实现","authors":"A. J. Leigh, Moslem Heidarpur, M. Mirhassani","doi":"10.1109/prime55000.2022.9816797","DOIUrl":null,"url":null,"abstract":"Simulation is a particularly significant component of discovery and hypothesis evaluation in neuroscience. Given the typical complexity of the mathematical models involved in neuromorphic modelling, neuromorphic hardware for acceleration is an interesting topic of research. Thus, a novel, high-accuracy digital implementation of the Fitzhugh-Nagumo neuron is realized on FPGA. The proposed system offers substantial hardware resource savings and a higher clock frequency compared to previously proposed implementations. For these reasons, it is an excellent candidate for use in hardware acceleration of neuroscientific simulation. The implemented hardware achieves a normalized RMSE of 0.2451 at a maximum operation frequency of 367.78MHz.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low-Resource Digital Implementation of the Fitzhugh-Nagumo Neuron\",\"authors\":\"A. J. Leigh, Moslem Heidarpur, M. Mirhassani\",\"doi\":\"10.1109/prime55000.2022.9816797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulation is a particularly significant component of discovery and hypothesis evaluation in neuroscience. Given the typical complexity of the mathematical models involved in neuromorphic modelling, neuromorphic hardware for acceleration is an interesting topic of research. Thus, a novel, high-accuracy digital implementation of the Fitzhugh-Nagumo neuron is realized on FPGA. The proposed system offers substantial hardware resource savings and a higher clock frequency compared to previously proposed implementations. For these reasons, it is an excellent candidate for use in hardware acceleration of neuroscientific simulation. The implemented hardware achieves a normalized RMSE of 0.2451 at a maximum operation frequency of 367.78MHz.\",\"PeriodicalId\":142196,\"journal\":{\"name\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/prime55000.2022.9816797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prime55000.2022.9816797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模拟是神经科学中发现和假设评估的一个特别重要的组成部分。考虑到神经形态建模中涉及的数学模型的典型复杂性,用于加速的神经形态硬件是一个有趣的研究课题。因此,在FPGA上实现了一种新颖的、高精度的Fitzhugh-Nagumo神经元的数字实现。与以前提出的实现相比,所提出的系统提供了大量的硬件资源节省和更高的时钟频率。由于这些原因,它是神经科学仿真硬件加速的一个很好的候选。所实现的硬件在最大工作频率367.78MHz下实现了0.2451的归一化RMSE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Low-Resource Digital Implementation of the Fitzhugh-Nagumo Neuron
Simulation is a particularly significant component of discovery and hypothesis evaluation in neuroscience. Given the typical complexity of the mathematical models involved in neuromorphic modelling, neuromorphic hardware for acceleration is an interesting topic of research. Thus, a novel, high-accuracy digital implementation of the Fitzhugh-Nagumo neuron is realized on FPGA. The proposed system offers substantial hardware resource savings and a higher clock frequency compared to previously proposed implementations. For these reasons, it is an excellent candidate for use in hardware acceleration of neuroscientific simulation. The implemented hardware achieves a normalized RMSE of 0.2451 at a maximum operation frequency of 367.78MHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信