广义动态OneMax的(1+1)EA

Timo Kötzing, Andrei Lissovoi, C. Witt
{"title":"广义动态OneMax的(1+1)EA","authors":"Timo Kötzing, Andrei Lissovoi, C. Witt","doi":"10.1145/2725494.2725502","DOIUrl":null,"url":null,"abstract":"Evolutionary algorithms (EAs) perform well in settings involving uncertainty, including settings with stochastic or dynamic fitness functions. In this paper, we analyze the (1+1) EA on dynamically changing OneMax, as introduced by Droste (2003). We re-prove the known results on first hitting times using the modern tool of drift analysis. We extend these results to search spaces which allow for more than two values per dimension. Furthermore, we make an anytime analysis as suggested by Jansen and Zarges (2014), analyzing how closely the (1+1) EA can track the dynamically moving optimum over time. We get tight bounds both for the case of bit strings, as well as for the case of more than two values per position. Surprisingly, in the latter setting, the expected quality of the search point maintained by the (1+1) EA does not depend on the number of values per dimension.","PeriodicalId":112331,"journal":{"name":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"(1+1) EA on Generalized Dynamic OneMax\",\"authors\":\"Timo Kötzing, Andrei Lissovoi, C. Witt\",\"doi\":\"10.1145/2725494.2725502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolutionary algorithms (EAs) perform well in settings involving uncertainty, including settings with stochastic or dynamic fitness functions. In this paper, we analyze the (1+1) EA on dynamically changing OneMax, as introduced by Droste (2003). We re-prove the known results on first hitting times using the modern tool of drift analysis. We extend these results to search spaces which allow for more than two values per dimension. Furthermore, we make an anytime analysis as suggested by Jansen and Zarges (2014), analyzing how closely the (1+1) EA can track the dynamically moving optimum over time. We get tight bounds both for the case of bit strings, as well as for the case of more than two values per position. Surprisingly, in the latter setting, the expected quality of the search point maintained by the (1+1) EA does not depend on the number of values per dimension.\",\"PeriodicalId\":112331,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2725494.2725502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2725494.2725502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

进化算法(EAs)在涉及不确定性的环境中表现良好,包括具有随机或动态适应度函数的设置。本文分析了Droste(2003)提出的动态变化OneMax的(1+1)EA。我们用现代漂移分析工具重新证明了已知的首次命中次数的结果。我们将这些结果扩展到允许每个维度有两个以上值的搜索空间。此外,根据Jansen和Zarges(2014)的建议,我们进行了随时分析,分析(1+1)EA可以在多大程度上跟踪动态移动的最优值。对于位串的情况,以及每个位置超过两个值的情况,我们都得到了严格的边界。令人惊讶的是,在后一种设置中,由(1+1)EA维持的搜索点的预期质量并不依赖于每个维度的值的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(1+1) EA on Generalized Dynamic OneMax
Evolutionary algorithms (EAs) perform well in settings involving uncertainty, including settings with stochastic or dynamic fitness functions. In this paper, we analyze the (1+1) EA on dynamically changing OneMax, as introduced by Droste (2003). We re-prove the known results on first hitting times using the modern tool of drift analysis. We extend these results to search spaces which allow for more than two values per dimension. Furthermore, we make an anytime analysis as suggested by Jansen and Zarges (2014), analyzing how closely the (1+1) EA can track the dynamically moving optimum over time. We get tight bounds both for the case of bit strings, as well as for the case of more than two values per position. Surprisingly, in the latter setting, the expected quality of the search point maintained by the (1+1) EA does not depend on the number of values per dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信