{"title":"可扩展地标泛洪:用于wsn的可扩展路由协议","authors":"Pengfei Di, T. Fuhrmann","doi":"10.1145/1658997.1658999","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSNs) are about to become a popular and inexpensive tool for all kinds of applications. More advanced applications also need end-to-end routing, which goes beyond the simple data dissemination and collection mechanisms of early WSNs. The special properties of WSNs -- scarce memory, CPU, and energy resources -- make this a challenge. The Dynamic Address Routing protocol (DART) could be a good candidate for WSN routing, if it were not so prone to link outages.\n In this paper, we propose Scalable Landmark Flooding (SLF), a new routing protocol for large WSNs. It combines ideas from landmark routing, flooding, and dynamic address routing. SLF is robust against link and node outages, requires only little routing state, and generates low maintenance traffic overhead.","PeriodicalId":181045,"journal":{"name":"Co-Next Student Workshop '09","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable landmark flooding: a scalable routing protocol for WSNs\",\"authors\":\"Pengfei Di, T. Fuhrmann\",\"doi\":\"10.1145/1658997.1658999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor networks (WSNs) are about to become a popular and inexpensive tool for all kinds of applications. More advanced applications also need end-to-end routing, which goes beyond the simple data dissemination and collection mechanisms of early WSNs. The special properties of WSNs -- scarce memory, CPU, and energy resources -- make this a challenge. The Dynamic Address Routing protocol (DART) could be a good candidate for WSN routing, if it were not so prone to link outages.\\n In this paper, we propose Scalable Landmark Flooding (SLF), a new routing protocol for large WSNs. It combines ideas from landmark routing, flooding, and dynamic address routing. SLF is robust against link and node outages, requires only little routing state, and generates low maintenance traffic overhead.\",\"PeriodicalId\":181045,\"journal\":{\"name\":\"Co-Next Student Workshop '09\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Co-Next Student Workshop '09\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1658997.1658999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Co-Next Student Workshop '09","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1658997.1658999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable landmark flooding: a scalable routing protocol for WSNs
Wireless sensor networks (WSNs) are about to become a popular and inexpensive tool for all kinds of applications. More advanced applications also need end-to-end routing, which goes beyond the simple data dissemination and collection mechanisms of early WSNs. The special properties of WSNs -- scarce memory, CPU, and energy resources -- make this a challenge. The Dynamic Address Routing protocol (DART) could be a good candidate for WSN routing, if it were not so prone to link outages.
In this paper, we propose Scalable Landmark Flooding (SLF), a new routing protocol for large WSNs. It combines ideas from landmark routing, flooding, and dynamic address routing. SLF is robust against link and node outages, requires only little routing state, and generates low maintenance traffic overhead.