一种可靠的低频MEMS能量采集器宽范围调谐技术

Shengkai Su, B. Truong, S. Aunet, C. Le
{"title":"一种可靠的低频MEMS能量采集器宽范围调谐技术","authors":"Shengkai Su, B. Truong, S. Aunet, C. Le","doi":"10.1109/PowerMEMS54003.2021.9658410","DOIUrl":null,"url":null,"abstract":"A frequency-tuning method with a high tuning sensitivity is difficult to control precisely or even cause the pull-in phenomenon before attaining the desired frequency. Here, the sensitivity is defined by the rate of change of the frequency with respect to the bias voltage. In this paper, a two-stage tuning technique is proposed to overcome fundamental challenges of MEMS vibration energy harvesting from low-frequency applications. The technique can significantly reduce the tuning sensitivity in comparison with previous tuning methods. In our particular example designs, when the frequency is tuned from 1 kHz to 50 Hz, a traditional tuning approach has a sensitivity of 495 Hz/V, while that of the proposed tuning approach is 18 Hz/V under the same design constraint. The effects of the tip capacitance are taken into account when investigating the pull-in phenomenon and estimating the theoretical lowest tunable frequency. The findings can provide a further guideline towards the optimal design of MEMS vibration energy harvesters operating at low-frequency ranges.","PeriodicalId":165158,"journal":{"name":"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A reliable and wide-range tuning technique for low-frequency MEMS energy harvesters\",\"authors\":\"Shengkai Su, B. Truong, S. Aunet, C. Le\",\"doi\":\"10.1109/PowerMEMS54003.2021.9658410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A frequency-tuning method with a high tuning sensitivity is difficult to control precisely or even cause the pull-in phenomenon before attaining the desired frequency. Here, the sensitivity is defined by the rate of change of the frequency with respect to the bias voltage. In this paper, a two-stage tuning technique is proposed to overcome fundamental challenges of MEMS vibration energy harvesting from low-frequency applications. The technique can significantly reduce the tuning sensitivity in comparison with previous tuning methods. In our particular example designs, when the frequency is tuned from 1 kHz to 50 Hz, a traditional tuning approach has a sensitivity of 495 Hz/V, while that of the proposed tuning approach is 18 Hz/V under the same design constraint. The effects of the tip capacitance are taken into account when investigating the pull-in phenomenon and estimating the theoretical lowest tunable frequency. The findings can provide a further guideline towards the optimal design of MEMS vibration energy harvesters operating at low-frequency ranges.\",\"PeriodicalId\":165158,\"journal\":{\"name\":\"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerMEMS54003.2021.9658410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS54003.2021.9658410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高调谐灵敏度的频率调谐方法难以精确控制,甚至在达到期望频率之前引起拉入现象。这里,灵敏度是由频率相对于偏置电压的变化率来定义的。本文提出了一种两级调谐技术,以克服MEMS低频振动能量收集的基本挑战。与以往的调谐方法相比,该技术可以显著降低调谐灵敏度。在我们的特定示例设计中,当频率从1 kHz调谐到50 Hz时,传统调谐方法的灵敏度为495 Hz/V,而在相同的设计约束下,所提出的调谐方法的灵敏度为18 Hz/V。在研究拉入现象和估计理论最低可调频率时,考虑了尖端电容的影响。研究结果可为MEMS低频振动能量采集器的优化设计提供进一步的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reliable and wide-range tuning technique for low-frequency MEMS energy harvesters
A frequency-tuning method with a high tuning sensitivity is difficult to control precisely or even cause the pull-in phenomenon before attaining the desired frequency. Here, the sensitivity is defined by the rate of change of the frequency with respect to the bias voltage. In this paper, a two-stage tuning technique is proposed to overcome fundamental challenges of MEMS vibration energy harvesting from low-frequency applications. The technique can significantly reduce the tuning sensitivity in comparison with previous tuning methods. In our particular example designs, when the frequency is tuned from 1 kHz to 50 Hz, a traditional tuning approach has a sensitivity of 495 Hz/V, while that of the proposed tuning approach is 18 Hz/V under the same design constraint. The effects of the tip capacitance are taken into account when investigating the pull-in phenomenon and estimating the theoretical lowest tunable frequency. The findings can provide a further guideline towards the optimal design of MEMS vibration energy harvesters operating at low-frequency ranges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信