稀疏正则化光子限制成像

Zachary T. Harmany, Roummel F. Marcia, R. Willett
{"title":"稀疏正则化光子限制成像","authors":"Zachary T. Harmany, Roummel F. Marcia, R. Willett","doi":"10.1109/ISBI.2010.5490062","DOIUrl":null,"url":null,"abstract":"In many medical imaging applications (e.g., SPECT, PET), the data are a count of the number of photons incident on a detector array. When the number of photons is small, the measurement process is best modeled with a Poisson distribution. The problem addressed in this paper is the estimation of an underlying intensity from photon-limited projections where the intensity admits a sparse or low-complexity representation. This approach is based on recent inroads in sparse reconstruction methods inspired by compressed sensing. However, unlike most recent advances in this area, the optimization formulation we explore uses a penalized negative Poisson loglikelihood objective function with nonnegativity constraints (since Poisson intensities are naturally nonnegative). This paper describes computational methods for solving the nonnegatively constrained sparse Poisson inverse problem. In particular, the proposed approach incorporates sequential separable quadratic approximations to the log-likelihood and computationally efficient partition-based multiscale estimation methods.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Sparsity-regularized photon-limited imaging\",\"authors\":\"Zachary T. Harmany, Roummel F. Marcia, R. Willett\",\"doi\":\"10.1109/ISBI.2010.5490062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many medical imaging applications (e.g., SPECT, PET), the data are a count of the number of photons incident on a detector array. When the number of photons is small, the measurement process is best modeled with a Poisson distribution. The problem addressed in this paper is the estimation of an underlying intensity from photon-limited projections where the intensity admits a sparse or low-complexity representation. This approach is based on recent inroads in sparse reconstruction methods inspired by compressed sensing. However, unlike most recent advances in this area, the optimization formulation we explore uses a penalized negative Poisson loglikelihood objective function with nonnegativity constraints (since Poisson intensities are naturally nonnegative). This paper describes computational methods for solving the nonnegatively constrained sparse Poisson inverse problem. In particular, the proposed approach incorporates sequential separable quadratic approximations to the log-likelihood and computationally efficient partition-based multiscale estimation methods.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在许多医学成像应用(例如,SPECT, PET)中,数据是入射到探测器阵列上的光子数量的计数。当光子数量较少时,测量过程最好用泊松分布来模拟。本文解决的问题是从光子有限的投影中估计潜在的强度,其中强度允许稀疏或低复杂性的表示。该方法是基于受压缩感知启发的稀疏重建方法的最新进展。然而,与该领域的最新进展不同,我们探索的优化公式使用非负约束的负泊松对数似然目标函数(因为泊松强度自然是非负的)。本文描述了求解非负约束稀疏泊松反问题的计算方法。特别地,提出的方法结合了顺序可分离二次逼近的对数似然和计算效率高的基于分区的多尺度估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparsity-regularized photon-limited imaging
In many medical imaging applications (e.g., SPECT, PET), the data are a count of the number of photons incident on a detector array. When the number of photons is small, the measurement process is best modeled with a Poisson distribution. The problem addressed in this paper is the estimation of an underlying intensity from photon-limited projections where the intensity admits a sparse or low-complexity representation. This approach is based on recent inroads in sparse reconstruction methods inspired by compressed sensing. However, unlike most recent advances in this area, the optimization formulation we explore uses a penalized negative Poisson loglikelihood objective function with nonnegativity constraints (since Poisson intensities are naturally nonnegative). This paper describes computational methods for solving the nonnegatively constrained sparse Poisson inverse problem. In particular, the proposed approach incorporates sequential separable quadratic approximations to the log-likelihood and computationally efficient partition-based multiscale estimation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信