{"title":"纳米尺寸金属的反向Hall-Petch关系","authors":"M. Zhao, Q. Jiang","doi":"10.1109/NANOEL.2006.1609774","DOIUrl":null,"url":null,"abstract":"The effect of melting temperature on Hall-Petch relationship has been studied. As grain size decreases, the melting temperature of the nano-structured crystals decreases, the Hall-Petch relationship is no longer sufficient. When the yield strength or hardness is taken as a function of reciprocal of the square root of the grain size, it has a numerical maximum whose location depends on the size of the bulk melting enthalpy of the crystals. Experimental results agree well with the modification induced by the size-dependence.","PeriodicalId":220722,"journal":{"name":"2006 IEEE Conference on Emerging Technologies - Nanoelectronics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Reverse Hall-Petch Relationship of Metals in Nanometer Size\",\"authors\":\"M. Zhao, Q. Jiang\",\"doi\":\"10.1109/NANOEL.2006.1609774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of melting temperature on Hall-Petch relationship has been studied. As grain size decreases, the melting temperature of the nano-structured crystals decreases, the Hall-Petch relationship is no longer sufficient. When the yield strength or hardness is taken as a function of reciprocal of the square root of the grain size, it has a numerical maximum whose location depends on the size of the bulk melting enthalpy of the crystals. Experimental results agree well with the modification induced by the size-dependence.\",\"PeriodicalId\":220722,\"journal\":{\"name\":\"2006 IEEE Conference on Emerging Technologies - Nanoelectronics\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Emerging Technologies - Nanoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANOEL.2006.1609774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Emerging Technologies - Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOEL.2006.1609774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reverse Hall-Petch Relationship of Metals in Nanometer Size
The effect of melting temperature on Hall-Petch relationship has been studied. As grain size decreases, the melting temperature of the nano-structured crystals decreases, the Hall-Petch relationship is no longer sufficient. When the yield strength or hardness is taken as a function of reciprocal of the square root of the grain size, it has a numerical maximum whose location depends on the size of the bulk melting enthalpy of the crystals. Experimental results agree well with the modification induced by the size-dependence.