面向无线传感器网络隐私保护的多级数据融合算法

Xiaojun Yu, Wenjun Zhou, Liang Li, D. Wu, Chen Ao, Zheng Wang
{"title":"面向无线传感器网络隐私保护的多级数据融合算法","authors":"Xiaojun Yu, Wenjun Zhou, Liang Li, D. Wu, Chen Ao, Zheng Wang","doi":"10.1504/ijcnds.2020.10028909","DOIUrl":null,"url":null,"abstract":"Data fusion is one of the key technologies in wireless sensor networks. To promote secure and efficient data fusion for wireless sensor networks, a privacy protection-based multi-level data fusion algorithm is proposed. In order to minimise the network energy consumption, the optimal number of cluster heads is selected and the adaptive clustering is performed according to the node energy and the positional relationship between nodes. Then, the cluster members collect and encrypt data, whereas the cluster head cleans and integrates the encrypted data. Furthermore, by analysing the correlation between data and constructing the BP neural network, cluster heads and the sink node can fuse the data in a cluster and the data between clusters to achieve the optimal data fusion. Results show that the mechanism proposed in this paper can significantly reduce resource overheads, effectively guarantee data security and fusion efficiency.","PeriodicalId":209177,"journal":{"name":"Int. J. Commun. Networks Distributed Syst.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-level data fusion algorithm towards privacy protection in wireless sensor networks\",\"authors\":\"Xiaojun Yu, Wenjun Zhou, Liang Li, D. Wu, Chen Ao, Zheng Wang\",\"doi\":\"10.1504/ijcnds.2020.10028909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data fusion is one of the key technologies in wireless sensor networks. To promote secure and efficient data fusion for wireless sensor networks, a privacy protection-based multi-level data fusion algorithm is proposed. In order to minimise the network energy consumption, the optimal number of cluster heads is selected and the adaptive clustering is performed according to the node energy and the positional relationship between nodes. Then, the cluster members collect and encrypt data, whereas the cluster head cleans and integrates the encrypted data. Furthermore, by analysing the correlation between data and constructing the BP neural network, cluster heads and the sink node can fuse the data in a cluster and the data between clusters to achieve the optimal data fusion. Results show that the mechanism proposed in this paper can significantly reduce resource overheads, effectively guarantee data security and fusion efficiency.\",\"PeriodicalId\":209177,\"journal\":{\"name\":\"Int. J. Commun. Networks Distributed Syst.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Commun. Networks Distributed Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcnds.2020.10028909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Commun. Networks Distributed Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcnds.2020.10028909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据融合是无线传感器网络的关键技术之一。为了提高无线传感器网络数据融合的安全性和效率,提出了一种基于隐私保护的多级数据融合算法。以最小化网络能耗为目标,根据节点能量和节点间的位置关系选择最优簇头数,进行自适应聚类。然后,集群成员收集和加密数据,而集群头清理和集成加密的数据。进一步,通过分析数据之间的相关性,构建BP神经网络,簇头和汇聚节点可以融合簇内数据和簇间数据,实现最优的数据融合。结果表明,本文提出的机制能够显著降低资源开销,有效保证数据安全性和融合效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-level data fusion algorithm towards privacy protection in wireless sensor networks
Data fusion is one of the key technologies in wireless sensor networks. To promote secure and efficient data fusion for wireless sensor networks, a privacy protection-based multi-level data fusion algorithm is proposed. In order to minimise the network energy consumption, the optimal number of cluster heads is selected and the adaptive clustering is performed according to the node energy and the positional relationship between nodes. Then, the cluster members collect and encrypt data, whereas the cluster head cleans and integrates the encrypted data. Furthermore, by analysing the correlation between data and constructing the BP neural network, cluster heads and the sink node can fuse the data in a cluster and the data between clusters to achieve the optimal data fusion. Results show that the mechanism proposed in this paper can significantly reduce resource overheads, effectively guarantee data security and fusion efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信