{"title":"Z 2 等变奇点理论及参激系统的1/2亚谐分叉","authors":"何国威, 方同","doi":"10.1360/ZA1995-25-3-296","DOIUrl":null,"url":null,"abstract":"从周期参数激励系统——Mathieu-Duffing方程的时间对称性出发,讨论了它的1/2亚谐分叉,利用Liapunov-Schmidt约化导出了 Z 2等变的代数分叉方程,并建立与此对应的分析方法: Z 2等变的奇点理论,得到了1/2亚谐分叉的全体分叉图,数值计算验证了这些结果.","PeriodicalId":256661,"journal":{"name":"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Z 2 等变奇点理论及参激系统的1/2亚谐分叉\",\"authors\":\"何国威, 方同\",\"doi\":\"10.1360/ZA1995-25-3-296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"从周期参数激励系统——Mathieu-Duffing方程的时间对称性出发,讨论了它的1/2亚谐分叉,利用Liapunov-Schmidt约化导出了 Z 2等变的代数分叉方程,并建立与此对应的分析方法: Z 2等变的奇点理论,得到了1/2亚谐分叉的全体分叉图,数值计算验证了这些结果.\",\"PeriodicalId\":256661,\"journal\":{\"name\":\"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1360/ZA1995-25-3-296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in China Series A-Mathematics, Physics, Astronomy & Technological Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1360/ZA1995-25-3-296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
从周期参数激励系统——Mathieu-Duffing方程的时间对称性出发,讨论了它的1/2亚谐分叉,利用Liapunov-Schmidt约化导出了 Z 2等变的代数分叉方程,并建立与此对应的分析方法: Z 2等变的奇点理论,得到了1/2亚谐分叉的全体分叉图,数值计算验证了这些结果.