实现了具有非对称效应的非线性随机波动模型和广义学生t -分布

D. Nugroho, Takayuki Morimoto
{"title":"实现了具有非对称效应的非线性随机波动模型和广义学生t -分布","authors":"D. Nugroho, Takayuki Morimoto","doi":"10.14490/JJSS.44.83","DOIUrl":null,"url":null,"abstract":"This study proposes a class of realized non-linear stochastic volatility models with asymmetric effects and generalized Student’s t-error distributions by applying three families of power transformation—exponential, modulus, and Yeo-Johnson—to lagged log volatility. The proposed class encompasses a raw version of the realized stochastic volatility model. In the Markov chain Monte Carlo algorithm, an efficient Hamiltonian Monte Carlo (HMC) method is developed to update the latent log volatility and transformation parameter, whereas the other parameters that could not be sampled directly are updated by an efficient Riemann manifold HMC method. Empirical studies on daily returns and four realized volatility estimators of the Tokyo Stock Price Index (TOPIX) over 4-year and 8-year periods demonstrate statistical evidence supporting the incorporation of skew distribution into the error density in the returns and the use of power transformations of lagged log volatility.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"REALIZED NON-LINEAR STOCHASTIC VOLATILITY MODELS WITH ASYMMETRIC EFFECTS AND GENERALIZED STUDENT'S T -DISTRIBUTIONS\",\"authors\":\"D. Nugroho, Takayuki Morimoto\",\"doi\":\"10.14490/JJSS.44.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a class of realized non-linear stochastic volatility models with asymmetric effects and generalized Student’s t-error distributions by applying three families of power transformation—exponential, modulus, and Yeo-Johnson—to lagged log volatility. The proposed class encompasses a raw version of the realized stochastic volatility model. In the Markov chain Monte Carlo algorithm, an efficient Hamiltonian Monte Carlo (HMC) method is developed to update the latent log volatility and transformation parameter, whereas the other parameters that could not be sampled directly are updated by an efficient Riemann manifold HMC method. Empirical studies on daily returns and four realized volatility estimators of the Tokyo Stock Price Index (TOPIX) over 4-year and 8-year periods demonstrate statistical evidence supporting the incorporation of skew distribution into the error density in the returns and the use of power transformations of lagged log volatility.\",\"PeriodicalId\":326924,\"journal\":{\"name\":\"Journal of the Japan Statistical Society. Japanese issue\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japan Statistical Society. Japanese issue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14490/JJSS.44.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.44.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文提出了一类具有非对称效应和广义Student 's t误差分布的非线性随机波动模型,该模型采用三种功率变换族——指数、模数和yeo - johnson -滞后对数波动。所建议的类包含已实现的随机波动模型的原始版本。在马尔可夫链蒙特卡罗算法中,提出了一种有效的哈密顿蒙特卡罗(HMC)方法来更新潜对数波动率和变换参数,而其他不能直接采样的参数则采用有效的Riemann流形HMC方法进行更新。对东京股票价格指数(TOPIX) 4年和8年期间的日收益和四个已实现波动率估计量的实证研究表明,统计证据支持将偏态分布纳入收益的误差密度,并使用滞后对数波动率的幂变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
REALIZED NON-LINEAR STOCHASTIC VOLATILITY MODELS WITH ASYMMETRIC EFFECTS AND GENERALIZED STUDENT'S T -DISTRIBUTIONS
This study proposes a class of realized non-linear stochastic volatility models with asymmetric effects and generalized Student’s t-error distributions by applying three families of power transformation—exponential, modulus, and Yeo-Johnson—to lagged log volatility. The proposed class encompasses a raw version of the realized stochastic volatility model. In the Markov chain Monte Carlo algorithm, an efficient Hamiltonian Monte Carlo (HMC) method is developed to update the latent log volatility and transformation parameter, whereas the other parameters that could not be sampled directly are updated by an efficient Riemann manifold HMC method. Empirical studies on daily returns and four realized volatility estimators of the Tokyo Stock Price Index (TOPIX) over 4-year and 8-year periods demonstrate statistical evidence supporting the incorporation of skew distribution into the error density in the returns and the use of power transformations of lagged log volatility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信