Mohammad Dehghani Soltani, Hossein Kazemi, E. Sarbazi, H. Haas, M. Safari
{"title":"高速移动光无线通信的最佳成像接收机设计","authors":"Mohammad Dehghani Soltani, Hossein Kazemi, E. Sarbazi, H. Haas, M. Safari","doi":"10.1109/iccworkshops53468.2022.9814646","DOIUrl":null,"url":null,"abstract":"The optical receivers suitable for the next generation of optical wireless networks need to be ultra-high-speed while having a wide field of view (FOV) to accommodate user mobility. The design of such receivers is challenging due to two known trade-offs, namely, the area-bandwidth and the gain-FOV. In this study, we consider these trade-offs and formulate an optimisation problem to design imaging receivers that can achieve maximum high speed while satisfying a minimum FOV requirement. The design will be based on an array of arrays of photodetectors for which we present analytical derivations of signal-to-noise ratio (SNR) assuming maximum ratio combining (MRC). Practical considerations and non-idealities have been considered in our design and the reliability of the analytical model is verified by Optic Studio-based simulations. The optimization problem is solved assuming on-off keying (OOK) modulation. The results show a trade-off between achievable data rate and FOV. For example, it is demonstrated that a data rate of ~23 Gbps is achievable with a receiver of at most 2 cm x 2 cm dimensions with a FOV of 15°. However, a receiver with the same dimensions may only achieve ~8 Gbps if the FOV requirement increases to 20°.","PeriodicalId":102261,"journal":{"name":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimal Imaging Receiver Design for High-Speed Mobile Optical Wireless Communications\",\"authors\":\"Mohammad Dehghani Soltani, Hossein Kazemi, E. Sarbazi, H. Haas, M. Safari\",\"doi\":\"10.1109/iccworkshops53468.2022.9814646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optical receivers suitable for the next generation of optical wireless networks need to be ultra-high-speed while having a wide field of view (FOV) to accommodate user mobility. The design of such receivers is challenging due to two known trade-offs, namely, the area-bandwidth and the gain-FOV. In this study, we consider these trade-offs and formulate an optimisation problem to design imaging receivers that can achieve maximum high speed while satisfying a minimum FOV requirement. The design will be based on an array of arrays of photodetectors for which we present analytical derivations of signal-to-noise ratio (SNR) assuming maximum ratio combining (MRC). Practical considerations and non-idealities have been considered in our design and the reliability of the analytical model is verified by Optic Studio-based simulations. The optimization problem is solved assuming on-off keying (OOK) modulation. The results show a trade-off between achievable data rate and FOV. For example, it is demonstrated that a data rate of ~23 Gbps is achievable with a receiver of at most 2 cm x 2 cm dimensions with a FOV of 15°. However, a receiver with the same dimensions may only achieve ~8 Gbps if the FOV requirement increases to 20°.\",\"PeriodicalId\":102261,\"journal\":{\"name\":\"2022 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccworkshops53468.2022.9814646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccworkshops53468.2022.9814646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Imaging Receiver Design for High-Speed Mobile Optical Wireless Communications
The optical receivers suitable for the next generation of optical wireless networks need to be ultra-high-speed while having a wide field of view (FOV) to accommodate user mobility. The design of such receivers is challenging due to two known trade-offs, namely, the area-bandwidth and the gain-FOV. In this study, we consider these trade-offs and formulate an optimisation problem to design imaging receivers that can achieve maximum high speed while satisfying a minimum FOV requirement. The design will be based on an array of arrays of photodetectors for which we present analytical derivations of signal-to-noise ratio (SNR) assuming maximum ratio combining (MRC). Practical considerations and non-idealities have been considered in our design and the reliability of the analytical model is verified by Optic Studio-based simulations. The optimization problem is solved assuming on-off keying (OOK) modulation. The results show a trade-off between achievable data rate and FOV. For example, it is demonstrated that a data rate of ~23 Gbps is achievable with a receiver of at most 2 cm x 2 cm dimensions with a FOV of 15°. However, a receiver with the same dimensions may only achieve ~8 Gbps if the FOV requirement increases to 20°.