对抗性机器学习——行业视角

R. Kumar, Magnus Nyström, J. Lambert, Andrew Marshall, Mario Goertzel, Andi Comissoneru, Matt Swann, Sharon Xia
{"title":"对抗性机器学习——行业视角","authors":"R. Kumar, Magnus Nyström, J. Lambert, Andrew Marshall, Mario Goertzel, Andi Comissoneru, Matt Swann, Sharon Xia","doi":"10.2139/ssrn.3532474","DOIUrl":null,"url":null,"abstract":"Based on interviews with 28 organizations, we found that industry practitioners are not equipped with tactical and strategic tools to protect, detect and respond to attacks on their Machine Learning (ML) systems. We leverage the insights from the interviews and enumerate the gaps in securing machine learning systems when viewed in the context of traditional software security development. We write this paper from the perspective of two personas: developers/ML engineers and security incident responders. The goal of this paper is to layout the research agenda to amend the Security Development Lifecycle for industrial-grade software in the adversarial ML era.","PeriodicalId":413600,"journal":{"name":"2020 IEEE Security and Privacy Workshops (SPW)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"160","resultStr":"{\"title\":\"Adversarial Machine Learning-Industry Perspectives\",\"authors\":\"R. Kumar, Magnus Nyström, J. Lambert, Andrew Marshall, Mario Goertzel, Andi Comissoneru, Matt Swann, Sharon Xia\",\"doi\":\"10.2139/ssrn.3532474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on interviews with 28 organizations, we found that industry practitioners are not equipped with tactical and strategic tools to protect, detect and respond to attacks on their Machine Learning (ML) systems. We leverage the insights from the interviews and enumerate the gaps in securing machine learning systems when viewed in the context of traditional software security development. We write this paper from the perspective of two personas: developers/ML engineers and security incident responders. The goal of this paper is to layout the research agenda to amend the Security Development Lifecycle for industrial-grade software in the adversarial ML era.\",\"PeriodicalId\":413600,\"journal\":{\"name\":\"2020 IEEE Security and Privacy Workshops (SPW)\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"160\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Security and Privacy Workshops (SPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3532474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Security and Privacy Workshops (SPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3532474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 160

摘要

根据对28个组织的采访,我们发现行业从业者没有配备战术和战略工具来保护,检测和响应对机器学习(ML)系统的攻击。我们利用访谈中的见解,列举了在传统软件安全开发背景下保护机器学习系统的差距。我们从两个角色的角度来撰写本文:开发人员/ML工程师和安全事件响应者。本文的目标是布局研究议程,以修改对抗性ML时代工业级软件的安全开发生命周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adversarial Machine Learning-Industry Perspectives
Based on interviews with 28 organizations, we found that industry practitioners are not equipped with tactical and strategic tools to protect, detect and respond to attacks on their Machine Learning (ML) systems. We leverage the insights from the interviews and enumerate the gaps in securing machine learning systems when viewed in the context of traditional software security development. We write this paper from the perspective of two personas: developers/ML engineers and security incident responders. The goal of this paper is to layout the research agenda to amend the Security Development Lifecycle for industrial-grade software in the adversarial ML era.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信