正则函数空间上微分算子的满射定理

F. Colombo, A. Damiano, I. Sabadini, D. Struppa
{"title":"正则函数空间上微分算子的满射定理","authors":"F. Colombo, A. Damiano, I. Sabadini, D. Struppa","doi":"10.1080/02781070500132679","DOIUrl":null,"url":null,"abstract":"In this article we show that it is possible to construct a Koszul-type complex for maps given by suitable pairwise commuting matrices of polynomials. This result has applications to surjectivity theorems for constant coefficients differential operators of finite and infinite order. In particular, we construct a large class of constant coefficients differential operators which are surjective on the space of regular (or monogenic) functions on open convex sets.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A surjectivity theorem for differential operators on spaces of regular functions\",\"authors\":\"F. Colombo, A. Damiano, I. Sabadini, D. Struppa\",\"doi\":\"10.1080/02781070500132679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we show that it is possible to construct a Koszul-type complex for maps given by suitable pairwise commuting matrices of polynomials. This result has applications to surjectivity theorems for constant coefficients differential operators of finite and infinite order. In particular, we construct a large class of constant coefficients differential operators which are surjective on the space of regular (or monogenic) functions on open convex sets.\",\"PeriodicalId\":272508,\"journal\":{\"name\":\"Complex Variables, Theory and Application: An International Journal\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables, Theory and Application: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02781070500132679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070500132679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们证明了对于由合适的多项式对交换矩阵所给出的映射,可以构造一个koszul型复形。该结果可应用于有限阶和无限阶常系数微分算子的满射定理。特别地,我们构造了一大类常系数微分算子,它们是开凸集上正则(或单基因)函数空间上的满射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A surjectivity theorem for differential operators on spaces of regular functions
In this article we show that it is possible to construct a Koszul-type complex for maps given by suitable pairwise commuting matrices of polynomials. This result has applications to surjectivity theorems for constant coefficients differential operators of finite and infinite order. In particular, we construct a large class of constant coefficients differential operators which are surjective on the space of regular (or monogenic) functions on open convex sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信